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PREFACE

This report is divided into four sections. The first two sec-
tions are concerned with applying optimization techniques to the control
of the fuel valve system for an air-breathing jet engine. In the last
report, a systeﬁ design which was referred to as a modified observer
system was discussed. The resulting control system consisted of a
series compensator which was one order less than the plant and a feed-
back compensator of the same order as the series compensator. The
design which resulted did not include a specification of the poles of
the feedback compensator. The specification of the poles of the feed-
back compensator is the subject of the first two sections. The pole
positions must be chosen so that the feedback compeﬂsakor and the series
are both stable. This restriction imposes an inequality constraint on
the optimization process. In addition, the poles should be chosen so
that the system has a low sensitivity to changes in the parameters of
the plant. This requirement is the objective function which we are
attempting to minimize.

The first procedure of this report uses the Sequential Uncon-
strained Minimization Technique. This procedure incorporates the
inequality constraints into the objective function and minimizes this
function subject to the equality constraints which result from the
modified observer design. These equality constraints relate the poles
of the feedback compensator to the poles of the series compensator.

iii
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These relationships were discussed in the last report. The final result
is a design which has a small low frequency sensitivity, realizes the
desired closed-loop transfer function, and results in stable compensator
transfer functions. Two such designs are presented. One is for an
eighth roder transfer function, and one is for a seventh order transfer
function.

The second procedure which is addressed to the fuel valve prob-
lem incorporates a different optimization procedure which is called the
method of Parallel Tangents or PARTAN. This procedure constructs a vec-
tor search in a direction which is orthogonal to all the previous
searches. This procedure is usually more effective than the first one
gradients are difficult to evaluate, It is especially effective when
the objective function is quadratic or neaﬁly quadratic. In this proce-
dure, a design is obtained which is different from the first but would
still be a useful design for the fuel valve servo,

The last two optimization procedures are applied to the 40-60
inlet control problem, “This problem entails minimizing the response of
the shock wave in the inlet to pressure disturbances from the compressor
side of the inlet. The first procedure utilizes a Pattern Search to
optimize the feedback compensator bétween the exit pressure and the
bypass doors. The search procedure starts with an initial choice of
parameters for the compensator and makes changes in these parameters
until an improvement is obtained. If an improvement is obtained, steps
are continued in the same direction until no further improvement is pos-

sible and the process is repeated until even very small steps do not
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result in an improvement. This particular application was to determine
the best numerator of the feedback compensator with two zeros.

The last section uses the Variable Metric optimization procedure
to determine the best control system for the inlet. The Variable Metric
procedure assumes that the objective function is nearly quadratic and
determines the optimum in one less step than the number of parameters if
the objective function is quadratic. This procedure is especially use-
ful when the gradients of the objective function are readily available.
As in the procedure above, the strategy seeks to force the total closed-
loop response of the system to match a desired frequency response over a
range of frequencies. The objective function is the total squared error
over this range of frequencies. A physicaily realizable control is

achieved for a variety of parameter values.



SEQUENTIAL UNCONSTRAINED MINIMIZATION

Introduction

It is the object of this section to show that the fuel valve
servo problem may be solved by conventional optimization techniques.
Specifically, tﬁe fuel valve servo problem is shown to be equivalent to
the problem of minimizing a nonlinear objective function y(x) subject to
both equality and inequality constraints (i.e., & nonlinear programming
problem).

To help solve this problem a technique is considered (the
sequential unconstrained minimization technique or SUMT) which concerns
minimization in the presence of inequality constraints. In the SUMT
procedure a new objective function Y(X,r) is selected such that its
minimization will yield a solution X*(r) (the* indicates the best
choice) which satisfies the inequality constraints. Then as r
approaches zero, X*(0) becomes the value of X* which minimizes the ori-
ginal objective function y(X), while satisfying the various inequality
conétraints. We then may consider sthe minimization of Y(X,r) subject to
some additional set of equality constraints. The introduction of equal-
ity constraints means that not all N of the variables X are independent.

A technique for accomplishing minimization in the presence of
equality consfraints is the constrained derivative or Jacobian technique.
If there are N variables and Ns consfraints, one may obtain a set of N
equations in N unknowns where the first (N—Ns) equations are constrained
derivatives (to be equal to zero when the minimum is achieved) and the

1



2
remaining Ns equations are the equality constraints. Combining both the
SUMT method and the constrained method, we then obtain a set of N equa-
tions in N unknowns which, when solved, yields a value X*(r) which sat-
isfies both the equality constraints and the inequality comstraints
" while minimizing Y(X,r). Then, as r approaches zero, X*(r) approaches X
which minimizes y(X) while satisfying all the equality and inequality
constraints. In order to solve the N nonlinear equations in N unknowns,
a Newton Raphson method is used and extensive use is made of digital
computers.

Alternate procedures for solving the fuel valve problem fall
into two categories, namely different ways of solving the optimization
problem or alternate expressions (strategies) concerning the basic prob-
lem. It is felt that other optimization techniques (PARTAN, Fletcher
Powell) are difficult to apply in the presence of the many equality con-
straints. Also, alternate strategies for attacking the fuel valve prob-
lem which consider the equality constraints must somehoﬁitreat the
inequality constraints. The above procedure is straightforward, but, as
will be shown concerning the computer program, coding for high dimension
problems can be a tedious job.

In the remainder of this section, the optimization procedures
are presented, the algorithm for solving the‘fuel valve problem is
derived, the computer program is discussed, results are presented and

conclusions are dravn.




Optimal Procedure

Suppose that we wish to minimize the objective function y(x) sub-

ject to a set of N inequality constraints G(X) 2 0 each of the form
gi(x) 20 (1)
where
i=1,2,...,N.

This problem may be solved by considering a dual problem, namely mini-

mizing the function

n
Y(X,r) = y(x) + ¢ ) *~%—7 (2)
i=1 8%

Suppose that, for some choice of r, some gi(x) are positive and large,
and the rest are near zero. The large positive ones will contribute
little penalty to the function Y(X,r) while the gi(x) which are near
zero will contribute heavily. Consider, for a fixed r, those x that

cause

an(g,r) =0 (3)
The resulting x is such that L(X,r) is a minimum for each value of r;
hence we can call the solution X*(r), that is, the best choice of X for
each value of r. If one considers only X in the allowable (feasible)
region G(X) 2 0, and, after solving 9L/3x = 0 for some fixed r, one

then takes the resulting X*(r) as a starting peint for a new minimization



procedure with a lower value of r: one has a sequential process for
minimizing a series of unconstrained objective functions L(X,r) having
decreasing values of r for each successive step in the process. Hence,
this technique is called the sequential unconstrained minimization tech-
nique, abbreviated SUMT.
The end result is that
LIMIT X%(r) = X*(0) (%)
0
where X#(0) is the value of X which minimizes y(X) subject to the con-
straining equations G(X) 2 0.
Let us now drop the subscript r, thus assuming r to be fixed for
each sequence of unconstrained minimization process and consider the
more general case where the N variables X are not independent; that is,

there exists a set of Ns equality constraints F(x) = 0 each of the form
fi(x) 20 (5)
where

i = 1,2,.I0’Ns.

There are now Ns dependent variables (let us define these as state vari-
ables s) and N-N_ independent variables (let us define these as decision
variables d). Then the state variables s depend on d. Diagrammatically,
one has the situation shown below for the interdependency of the vari-

ables. Arrows indicate one variable influencing another.



+ s * 8
Y ¢ F ¢
+ d +4d

In order to minimize the objective function Y(s,d) is necessary that the
derivative of Y with respect to the independent variables d is zero. We
know that the derivative of the equation F(x) = 0 with respect to the

independent variables must be zero; hence, we have the following N equa-

tions in N unknowns using the chain rule of differentiation

1T ]T
av(d) _ . _ 3Y¥(d,s) 3Y(d,s)|" ds(4d)
da %% 7% ¢ [[ s ) ad | (8)
(d) _ . _ 9F(d,s) 3ar(d,s)) [ds(d)
7 e [ 3s }L ad } (7

The difficulty in solving the above lies in obtaining S(d) which for
nonlinear constraint equations,is a formidable task. Hence, [dS(d)J]/dd
can be solved for in Eq. (7) and substituted into Eq. (6) giving the

following N-Ns equations in N unknowns

o = s |favea,s)|T ora,)] "t [orca,o]]* (8)
o run 5 ) (T3

This result is called the constrained derivative of L with respect to d.

If we include the Ns constraint equations
0 = F(d,s) (9)

we have, in Eqs. (8) and (9), a set of N equations in N unknowns, all
the elements of which are readily available from the objective function

and the equality constraints.
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The technique selected for solving the above system of equations
is to write a Taylor series expansion for the N equations, to take only
the linear terms and then to solve for {:]. The result is the Newton-
Raphscn iterative procedure. An initial guess [:g} is assumed. Then a
better estimate of [d) is obtained, and the process is repeated. Once a
value of [g] results which satisfactorily solves the above set of equa-
tions for a fixed value of r [see Eq. (2)], we can call the result
[::2:;]. Then, repeating the process for even lower values of r, we
ﬂote that
LIMIT d*(r)] - {d*] - yi
r*0 Is®(r) 8%
where X* is the value of X which minimizes the original objective func-
tion y(X) subject to the inequality comstraints G(X) 2 0 and the equal-
ity constraints of F(X) = 0. The Newton-Raphson approach results in the

following equation:

2 _ay ]t [ay
_ 1a¥(r)] _ ido o(d,s) ad dad
Xi(r) = {;*(r)] - [so] - F F F (10)
%d | 9s { do] [do}
so
so

Note that the Newton-Raphson algorithm [Eq. (10)] requires the evalua-
ay
dd”
the partial derivatives of the second term on the right side of the

tion of the partial derivatives of From Eq. (7) it is evident that
equation are rather involved; hence, perturbation techniques are used to
compute them. All other partials and equations are readily available,

although somewhat teduous to derive.



It is now in order to redefine the above algorithm (stated in
optimization terms) and use specific equations for the fuel valve servo
study. The following change of variables adequately describes the prob-
lem in a form suitable for the fuel valve servo. The decision variables

and state variables become

d = PR
(11)
s = CR
The dual objective function, including inequality constraints, for a
fixed r is defined
Y(PR,CR) = %L2(PR,CR) (12)
Finally, the equality constraints are defined
0 = F(PR,CR) = C(CR) - [T JP(PR) - [T6] (13)

In Eq. (13), Tu and T, are matrices of constants, while C is a vector

6
quantity, each element of which depends only on the vector CR, and P is
a vector quantity, each element of which depends only on the vector PR.
The above choice of Egs. (11), (12), and (13) is made clear in a subse-
quent paragraph of this section in which the fuel valve servo problem is

discussed. For now, it is sufficient to take the above equations and

substitute them directly inte Eq. (10). The result of this is



PR
_ ere(o)) . [PRo
XH(r) = [CR*(”] . [cno] -

L3 _dL Lg_ri_J[aL ‘T‘[g_x_._h_ [an | I
, JPR,CR_dPR dPR] [9PR) |(dPR] [3CK, PR
L g_ﬁ__ ‘g_c_. o o C(CR)-T, P(FR)
4 dFR | 4CR PR PR
] 0 -T6 0
CR, CR,
(14)
In Eq. (1u)
* dL(PR) _ 3L(PR,CR) _ ,
dFR ~ OPR
(15)

s e () e )2, e )]
~ |{9CR} |(d4CR 4 dPR
Note from the above that it is necessary to obtain the partial deriva-
tives of A; hence, perturbation techniques are suggested whereas all

other partials are readily available although tedious to derive.

A computer program was written to facilitate the above Newton-

Raphson iterative procedure.

Computer Program for the Design Procedure

The computer program has two distinct parts. The first part, a
subroutine (RDR), sets up the matrices shown in Eqs. (14) and (15).

These equations may be compactly'written as



PR# -
X#(r) = ICR*&; =X - [DRIXO) 1 RlXO (186)

The first part of the program, then, obtains the matrix DR and the vec~

tor R given the vector Xo. The second part of the program (the main

PR%*(r)
program NWRP) obtains [CR*(r)

elimination rather than inverting DR directly.

] by solving for DR"l R using Gauss-Jordan

Fig. 1 shows the flow diagram for subroutine RDR., The letters
UA" through "U" are used for reference and correspond to those similarly
marked portions of the program shown in the listing in Appendix A.

In "A" through "F" the program obtains P(PR) and gF_ when K = 1

dPR
ac . : 4Q_
and C(CR) and R when K = 2. Dummy variables Q and 30R are used with

Q =PR for K= 1 and Q = CR for K = 2. This facet of the program makes
use of the fact that the polynomial coefficients P(PR) and C(CR) are of
the same form. In general, this might not be the case.

In "H" through "K" the matrix A [Eq. (15)] is evaluated. In "L"
through "Q" the matrix DR is calculated except for §?§%%E§75 "L" through
"Q" is used only once for each time RDR is called (that is, when the
counter n = 1).

In "R" through "T" 5??%%E§7' is evaluated by perturbing the vari-
ables PR and CR. A counter n is varied from 2 to (N - Ns + 1) to perturdb
the N - Ns decision variables PR (using "R" and "S") and from (N - Ns + 1)
to (N + 1) to vary the Ns state variables CR (using "R" and "T"). The
numbers shown in the decision blocks refer to a case where N = 12 and

N, = N - N, = 6.



A| QR = PR K =1
QR = CR
PERTURB q
d PRy _
sel o S S K = 2 (&) e
D
P=Q Yes
No _No RESET
dP_ _ dQ PRy, |© n=n+l
PR ~ A0R |
Yes
No 11————
C=Q
Fl ac _aq_ RESETR R —— (n27)
dcR - doR o R(1) to be . Yes All PR MAIN
-r 4 erturbed? p=n Perturbed? 4
4 JdFR
-1
|8 RETURN
dcrR
RESET
PR,P(PR) CR RESET LAST
>(8) : [cR(n-8)] | CcR,C(CR)
' | M=1
3L R )
1 N=1
3CR * K=1
PERTURB CR No
[CcR(n-7)]
COMPLETE DR

5 -

M=z 2 (n>13)
AlS All Variables
Perturbed?
Yes
(N~l)ST COLUMN OF
A-A
Jl -7 ar_ —.’6 A No b R
4 dPR ST|R
9(PR,CR) AMOUNT (N-1)
K Yes VAR. PERTURBED ?

=3

Ll A=A STORE
-t dF_
4 IR
' aL Q C(CR)
T P(PR)
N ¢ P
DR EXCEPT
5 oL . "
3(PR,CR) PR T

0T

Fig. 1. Flow Diagram of Subroutine RDR.
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Finally, when the counter n = N + 1, the matrix DR is completed
in "U" and R and DR are returned to the main program. It should be
noted that ail equations other thén the logic must be changed for each
application of this program.

It is the job of the main program (NWRP) to monitor the Newton-
Raphson procedure for soiving the N equations in N unknowns. A flow
diagram for NWRP is shown in Fig. 2. It is necessary to input to NWRP
initial values of r [Eq. (2)], Xo’ and the matrices T, and T6 [Eq. (16)].
Then NWRP calls RDR and prints out the useful results. If the error (a
measure of how well the equality constraints are met) is "small", a
lower value of r is selected (until some minimum r value is reached).
If the error is "large'', one iterates up to 150 iterations and counts
successive increases in the error. Eq. (16) is solved for (DR”l)R by
calling a subroutine INVERT in which DR and R are adjoined (e.g., [DRIR])
and row and column {Gauss-Jordan) elimination is done by seeking maximum
pivotal elements, thus minimizing the effects of zero pivotal elements,
round off, and ill conditioning. The main program al#o checks the pos-
sibility that Eq. (16) mighf result in a negative (forbidden) value for
one of the variables. An arbitrarily small positive member replaces any
resulting negative value, thus adding considerable penalty to the objec-
tive function [Eq. (2)]. Finally, X, is replaced with the newest value
of X*(r) and the process is repeated. In essence, the end result of one
computing cycle is X*(r). The print statements call for, in order, the
independent variables PR, the dependent variables CR, the vector R (Eqgs.

(14) and (16)], the functions P(PR), C(CR), the values of C(CR) that
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PRINT
PR,CR,P,R,C,
T, P+T, ,ERROR, L(PR,CR)

MAKE NEG.
X's = ,00)

e
)
[N A

STOP

ADD 1 TO T

N COUNT '
CALL INVERT>__,
DR™IR

Fig. 2. Flow Diagram of Main Program (NWRP).
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exactly satisfy the equality constraints (e.g., C(CR) = [TQJP(PR} + T,
the error (with regard to the equality constraints), and the objective
function L(PR,CR) [Eq. (1u)].
It will now be shown that the fuel valve servo problem may be
structured as suggested in Eqs. (11) through (13) so that Eqs. (14) and

(15) (and the program NWRP) may be used to obtain the design. _

Application to the Fuel Valve Servo Problem

In the fuel valve servo problem, it is necessary to design a
control system utilizing series and feedback compensation (Fig. 3).

We are given the polynomials GN(S) and GD(S) for the open loop
plant and the polynomials TN(S) and TD(S) for the desired closed loop
transfer function. The remaining polynomials P(S), C(S), and H(S) must
be chosen to complete the design (equality constraints). Moreover,
since the system must be realizable and reasonably insensitive to dis-
turbances, the polynomials P(S) and C(S) must contain only left half
plane roots (inequality constraints). One immediate question is: How
can we ensure that P(S) and C(S) contain only left half plane roots,
and, if possible, can we obtain some real valued variables to use later
in the optimization process? Consideé-the following decomposition of
the third order case for the polynomial P(S). Note that C(S) can be

treated in exactly the same manner.

P(s) = s> + P82 + PS4 P = (s 4Py NP 4P S 4p (17

2 1 11 10)

Any order polynomial P(S) or C(S) may be similarly decomposed into the
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product of several second order polynomials and, if the original polynom-
ial is of an odd order, one first order polynomial. In general, a poly-
nomial such as P(S) or C(S) contains pairs of real roots and/or pairs of
complex conjugate roots as well as one additional real root if the poly-
nomial is of odd order. The conclusion to be reached is that coeffici-

ents such as P P 1 and P

20° "1 10
polynomial P(S) with coefficients P

are real valued, and if positive, the

o5 Pl, and P0 must have all left half

S plane roots. Additionally, if P20’ P,., and P o are known, the actual

11 1l
poles are easily found if desired. The following definitions are made:

Lo -]
i

Coefficients of P(s) (i.e., P,, P., P.)

2’ "1’ 70

20° Pll’ PlO

Coefficients of C(S) (i.e., C

PR

Coefficients such as P

(g
1]

22 €15 Cp)

CR

Coefficients such as C20’ Cll’ Clo

Coefficients of H(S)

=
n

The letter "R" in PR and CR shows that these coefficients are indicaters
concerning the roots of P(S) and C(S) (i.e., if the PR and CR are posi-
tive, all the roots of P(S) and C(S) have negative real parts). The
variables X to be used in the optimization process may“now be chosen to
be the vector [ER]. Then the transfer functions g-and g-are stable if
¢, P, and H are of the same order and if [gg]z 0. Thus, inequality con-

straints of the form G(S) 2 0 are defined by
PR
{CR) 20 ' (18)

From Fig. 3, it is evident that if GN(S) = Th(S), then
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PLANT
P(S) Gy (5]
(s) R
COMPENSATORS
COMPENSATORS
H(S)
O]
y W) P(S)#Gy (S)
R " T (8) © CISIRG,(5) + Gy (SIFH(S)

Fig. 3. Closed Loop Control System.
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GD(S)C(S) + GN(S)H(S) = P(S)TD(S) (19)

The coefficients of C(S) and H(S) may then be related linearly
to the coefficients of P(S) to realize the desired transfer function,
thus providing equality constraints. If the coefficients of the highest
powers of C(S) and P(S) are both one, then the following equality con-
straints result. The coefficients C depend only on the variables CR,
and the coefficients P depend only on the variables PR.

c(cr)] .
[H ] = [1,JP(PR) + T, (20)

Partioning the above we obtain

0 = c(cr) - [T, IP(PR) - T, (21)

0=H - [T3]P(PR) - T (22)

5

Since the roots of H are not of particular concern, Eq. (21) is the
equality constraint equation linearly relating the coefficienté Cand P
but non-linearly relating the variables CR and PR. The above conditions
require the following relations between the orders of the polynomials
involved.

Polynomial Order Undetermined (Free)

quffﬁcignts
TD(S) i 0
c(S),CR(S) i-1 i-1
P(S),PR(S) i-1 i-1

H(S) i-1 i (23)




17
Consequently, for an ith order realization problem, there are N = 2(i-1)
variables (PR and CR) with N-N_ = i-1 independent (decision) variables
and Ns = i-1 dependent (state) variables. The variables PR may be con-
sidered (arbitrarily) independent while the variables CR may be consid-
ered dependent.

Let us now choose an objective function y(X) to be the low

frequency sensitivity S¥ of the closed loop transfer function,

_ TN(S)

TRy

to changes in the forward loop gain (K). Since GD(S), for the cases we
shall consider, has a free S, let us define the low frequency sensitiv-

ity as

(24)

y(x) = sX (PR,cR) = DIMIT {1 Ty(S) €(5) Gy(8)]

s+0 |S 'rD(s) P(S) GN(s)J

The fuel valve servo problem for TD(S) of order i may now be
formulated into an optimization problem. We wish to optimize the objec-
tive function S¥ (PR,CR) with PR the independent variables and CR the
dependent variables. The inequality constraints (for stability) can be
treated by minimizing a dual objective function, for a fixed number where
r>0.

i

2
-1

) [Ffi‘” + E‘r}z"” s %[L(PR,CR)]:Z (25)
- i i

Y(PR,CR) = %|s¥ (PR,CR) + r
T i
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There are also i-l equality constraints.

0 = C{(CR) - [Tu] P(PR) - T, (26)

Eqs. (25) and (26) are of the form suggested in Egs. (12) and
(13); hence, Eq. (14) provides an algorithm for finding the variables
ng:g:;] and the NWPR program can be used to carry out the algorithm.
Once acceptable values of PR and CR are obtained, the polynomials P(S)
and C(S) are determined. From Eq. (22), the coefficients of H(S) are
obtained and the design is complete.

Two designs were obtained. Fig. 4 shows the final results for
TD(S) of order i = 8; hence, there were 2(i-1) = 14 variables (7 inde-
pendent and 7 dependent). Satisfactory results occurred after 119 iter-
ations (43 seconds of central processor time). Fig. 5 shows the final
results for TD(S) of order i = 7; hence, there were 12 variables (6
independent and 6 dependent). Satisfactory results occurred after 33
iterations (10 seconds of central processor time). In both cases, satis-
factory results meant that the constraint Eq. (21) was satisfied to a
high degree of accuracy. Then the final value of P(S) was taken, and
Eq. (20) was used to specify the final values for €(S) and H(S), thus
satisfying the constraint equations exactly with all the roots of P(S)
and C(S) in the left half plane.

The above results represent a stable realization in which all
roots of P(S) and C(5) are well damped (>0.7). In view of the many con-

straint equations and variables involved, the cost of the computing time

must be considered minimal compared to the cost of man hours required by
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a trial-and-error approach to the same problem. The information needed
by the computer to design the system includes the constraint equation
matrices in Eqs. {20) to (22), initial guesses at all the variables
(PRj = CRj = 1000 was used for j = 1, 2,..., i-1), initial value for r in
Eq. (25) (r = 5 was used), and explicit values for all the partial deriv-
atives appearing in Eq. (14) (except for partials of A in Eq. (15), which
partials are obtained by perturbing the variables PR and CR).

Two alternate approaches were tried for the fuel valve servo
problem. Both approaches were aimed at simplifying the calculation of
the matrix DR [Eqs. (14) and (16)]. 1In the first, using a Fletcher-
Powell technique, DR“l was estimated where in the second, an original
approach to the problem, a somewhat different treatment was attempted.

The crux of the Fletcher-Powell approach is that the vector R
[Eqs. (14) and (16)] is the gradient vector for some objective function
Z(X). However, in this case, the vector R consists of constrained
derivatives and equality constraints. It is felt that the fact that R is
not a gradient vector explains the inability of the technique to converge
to an answer. Briefly, if R were a gradient vector for some Z(X), then
the following algorithm estimates DR'l and minimizes Z(X) with quadratic

convergence. Let H = initial guess of (DRIXO)”l.

8 = —HORIXO

LET X = Xo + oS (o is a scalar)

OBTAIN ot SO THAT éZEgé&ll =0
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THEN X* = Xo + O*S

LET Y = R|

X% Xo

! ass? HOYYTHO
(DR|,,) = H_+ S .-

X! o gTy TH Y

o]

) -1
Hy = (DR|y,)
X = X%
[o]
REPEAT PROCESS (27)

The major difficulty in applying the Fletcher-Powell approach
lies in the one-dimensional gradient search for o®. An attempt was made

at finding a* so that

T
aZ(XQU-) dx - - T =
{"‘5&"""‘] &K o= (Rly,, " S = 6w (28)

A Newton-Raphson technique was used‘tb find o* such that G(a#) = 0. This
procedure never did converge to a satisfactory result (satisfying the
‘equality constraints). Additionally, the computing time taken by the one-
dimensional search for o* caused each iteration of Fletcher-Powell to take
as much time as each iteration of the Newton-Raphson technique in which
(DR!XO)-l is found directly.

The second alternate procedure is aimed at satisfying the equality

and inequality constraints only. A vector R [as in Eq. (16)] is so chosen
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that, if every element is near zero, then all constraints are satisfied,
and the design is completed. Also, the matrix DR is simple to compute.

As in the Fletcher-Powell case {above) the vector R is neither the gradi-
ent of an objective function nor a vector of constrained derivatives and
equality constraints; hence, convergence is not guaranteed. The vector R
is chosen as follows, where the upper half is chosen to satisfy the equal-~-
ity constraints and the bottom half is to satisfy the inequality con-

straints:

[C(CR) - [TQJP(PR) - TG“
R = T (29)
e o e
PR, "CR)
] PRi1 CRy|
Then the matrix DR is
[ p 4P ac
DR = 3R . 4 dPR dCR (30)
a(PR,CR) 1 1
2 — 2
PR, CR,
! | 1
3 - 2]
] PR, CR, , |

With the above definitions of R and DR, Eq. (16) can be used to itera-

. PR#%
tively obtain the solution [CR*

computing time per iteration required by the SUMT-~constrained derivative

]. The above procedure took 1/3 of the

--Nevwton-Raphson procedure, had far betterkconvergence than did the

Fletcher-Powell prodedure, but had more erratic behavior than the SUMT--
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constrained derivative--Newton-Raphson procedure. 1t is felt that Egs.
(29) and (30) hold some promise as a method of solving the equality and
inequality constraint, but that the SUMT--constrained derivative--Newton-

Raphson technique is far superior.

Summary and Conclusions

The fuel valve servo problem requires the design of a control
system utilizing series and feedback compensation (Fig. 3). Given are
the polynomials GN(S) and GD(S) for the open loop plant and TN(S) and
TD(S) for the closed loop plant. The remaining polynomials P(S), C(S),
and H(S) must be chosen to complete the design (equality constraints).
Moreover, since the system must be realizable and reasonably insensitive
to disturbances, the polynomials P(S) and C(8) must contain only left
half plane roots (inequality constraints). The polynomials P(S) and C(8)
are factored into first and second order polynomials, and the resulting
coefficients become the variables. In general, if GN(S) and TN(S) are
constants and if TD(S) and GD(S) are ith order, P(S) and C(S) are (i-1)th
order and there are 2 (i-1) variables, half of which are independent and
half of which are dependent. The design problem is restructured into an
optimization problem. The objective function is low frequency sensitiv-
ity [Eq. (2u)]. A Sequential Unconstrained Minimization Technique (SUMT)
is used to treat the inequality constraints [Eqs. (2) and (25)]. The con-
straint equation [Eq. (21)] is treated using the constrained derivative
approach [Eqs. (6) to (9)]. The r;sulting Newton-Raphson algorithm [Eq.

(14)] was used to obtain the designs shown in Figs. 4 and 5.
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The cost of computing time must be considered minimal as compared
to the cost of man hours required to solve the above multi-variable prob-
lem by trial-and error. The only difficulty in setting up the program
lies in obtianing the required partial derivatives [Eq. (1u)] which is
somewhat tedious.

Alternate procedures (Fletcher-Powell and a different choice of
the vector R) were attempted, but the SUMT~-constrained derivative~-~
Newton-Raphson technique was far superior, and the resulting désign
exhibited excellent damping characteristics for the roots of P(S) and

c(s).
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DULO (5 o4 )2 000 (4 46 )
SLLE (5 461220/ (P10 s+ 2)
COLD (508 )21 o/ (P wC 3]
COLD (6410 21 ./ (2 10%C 00
DOLD (510 21 e/ (P1CACIC
%J 30 32 Iz ieNP
09 3% Sz 1eNP2
38 DOLO(I +Jd1z00LO (I sd)*CON
co 39 Iz 1.NP
30 DOLD (I vI)1200LD(LsI3*2.*S/(PLI ) #*3)

-~

32

— -

c CAL\,ULAT" VECTOR R
00 16/ Iz 1eNP
16 ROTIDLDCII-SELTACTD)

NOML =MNP- 1
¢ 00 21 Iz1sNP
RUI+NP )z O, _
D0 22 Lz1+NP
22 RUIT#NPIzZRUI+NPI+TL ([ +LIePL L)
21 RUI+NP)IZCUOINT-RAT+NP) ~-TE( D)

C STORS ABOVE IN DR
00 23 Iz1sNP
‘B0 23 Jz1.NP2

23 0R(ILJIZDOLOCI W)
P' 00 24 Iz1sNP i ‘
. DO 24 Jz1.NP e e e e

24 DR(INPYJ) =T4DPM (T vd)
0O 25 Iz 1eNP

e B0 28 JT 1eNP et oot —ine oeoemenes | tan! oot £ o e e e e e 2 o e e e e e et e o

25 DR ALANPY JeNT = GO AT ard o R o

“C STORE FOR FUTURE USE
SISO £ 1+ . S edp O 2
D0 26 Jz1aNP -
26 TUDPSEIyJ)zT4DPMAIT vd)
— DO 41 Iz1eNP .
' PS(TI1=P( I}
41 CS{Ii=c( I
 FCN=Qo

[P

DC 48 Iz1leNP
"7 48 FCNzFCNsS«(1./CRII}+1./PR(T))
e FONZFEN® (10905 /3056 10 LC(61/PLE) 1% 0001

D0 92 IzieNP
DO §2 JzleNP
i D2 BR AT wJ )T FCN* CRAI wJ IR #DLD (U e s
00 53 Iz1sNP
0 53 Jz1eNP
N 53 DORAI »J+NP) ZECN2OR( Iy JENC I+ RL D) AOLS (U e

00 54 Iz1+NP
St R{I)=FCN*R({(X) -
GO 10 13

C APPROXIMATE PARTIALS OF DVLTA USING PERTURSATIONS CALLED DDELT(Iv»J)
§ DO 31 Iz1sNP

e PN 2L DELTOCI) sDELTALL Y - :

GO 32 Jz1lsNP ' !
; 2 O0FL TCJe N=3 ) (U RELT RO ~CEL TR € 1) /5 05
e . AT IN=1-NP2) 1211911 .. k e . S U

L2 IFIN-1-NP) 13,3489l Y

C PERTUER PR{N-1)
. M‘_M‘.l.‘) NN+l

5 PRIN-1)z PR(N*I)*I.DGI
Kz1 )
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IF{N-2-NP)

2Ry 23927

C  UST T4LFEM FOR NOMINAL(UNPIRTURLED )Y VALUFS OF PR
22 20 35 Iz 1leNP
UC 3% Jz1lehP

75 T lPMETs J) ZTRGPS (T vd)
C RISET LAST PR

AN P(PR)
P1O=PR (NP)
77' C8 42 I=z1eNP
ne PLI)=P<(I)
GO TO 23
C RISET CRIN-2-NP) 4ND PERTUREZ (R(N-1-NP)

27 CRAIN-2-NP)ZCRIN-2-NP 1}/ 1001
29 CRAN-1-NP)ZCR{N-1I-NP )*1,.0N01]
EPSz 001 *CR(N-1-NP)/1.0GC1

u:2

> i 2
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50 10 15
1 1 DO 35 l:l,Np R . ) - . - - . T .
GO 36 JZ1iNP2

36 DRI »JIZOR(I +d)~-DDEZLTE Is J) »F CN
€ RESET LAST CR AND C(CR).COMPLETE DR 3Y INCLUDING

PARTIALS OF DELTA

CRUIN-1-NPY=ZCRIN-I-NP)/ 1,001 T
kj C1O=CR(NP)
D0 47 Iz1sNP | o
Tu7 CDysesiar e e e e e e e e e e e
‘Mz 1
R . 5 S A e . o e o
M=l
"RE TURN
. ENO ~ . _
1.00CE+Q0 s
o T9.D33E+03 1.000E+C0 e
2.044E+¢08-9.0936+03 1 .000E+C0
~3.5C4E+12 2.044E+08-9.0236+03 1.000€+00¢,
o GADYGE+16-3.504E+12 2.044E+08-9.0338+03 L.000E+C0 B )
~1 \065E+2]1 6s090E+16-3e5065+12 2.G44E+08-9.793E+03 1.000E+00
~9.093E+03 2.04UE+CB-3.504E+12+46 69CE+16~-1.065E+21 1.870E+25




PARALLEL TANGENTS

Introduction

The method of Parallel Tangents (or Partan) as developed by Shah,

Buehler and Kepthorne [1] is ideally suited to cost functions of the form

Q(Z)

€
]

M(w) = Y(Z)

/

Cost = y
where

7 = (zl,zz,za,...,zN)

and Q and M are quadratic and monotonic cost functions respectively. The
individual parameters (Zi) are unconstrained.

In this report, a particular form of Partan known as Continued
Gradient Partan 1s discussed. The algorithm for solving the class of
cost functions defined above is given along with general comments regard-
ing Partan's efficiency. This is followed by a description of the Partan
computer program including modifications needed for problems having con-
strained parameters., After a section giving I/0 formats and program
flow charts, the application of Partan to the Lewis Fuel Valve problem is

described.

34
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Optimization Procedure

The Partan algorithm serves as a master program for the parameter
search, initiating the search at any given starting point, and then guid-
ing the search until termination. The Partan procedure consists of
several parts:

1. The Partan algorithm

2. The gradient calculation

3. The vector search (Golden Section)
4, The cost calculation

5. The constraint calculation (if any)

The Partan Algorithm

Let the set of parameters at any step (j) of the search be denoted

by

25 s [zl(j),zzcj),...,zn(j)]

Then io corresponds to the given starting point. According to the Partan

algorithm (illustrated graphically in Fig. 1), the cost function gradient

(Vy) is evaluated at Zo (and subsequently at 22, ﬁu, e oo a2, ) and

the optimum along that gradient vector is found at 22 {and subsequently
23, 25, e s iodd)' This step is called a gradient step. When the
search routine reaches 23 {and later ﬁs, 27, e e s zodd)’ the optimum
Z, is then found along the vector (23_— Zo) or in general (Zodd - Zodd-3)'

This iz known as an acceleration step.
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If the individual vector optimum points 2j are exactly determined
along precisely computed vectors, the optimum set of parameters having a
quasi-quadratic cost will be found in 2N-l steps. No other procedure has
been shown to guarantee such convergence.

If the cost function is not quasi-quadratic, it is often not
desirable to exactly determine the vectors and their resulting optimum
points (see Harkins [3]). This inexactness introduces some amount of ran-
domness into the search which is beneficial for problems having cost func-

tions with highly complex contours in the parameter space.

Gradient Calculation

The gradient procedure estimates y by making perturbations about
each zeven and measuring the change in cost. This method is not only
desirable for non-quasi-quadratic problems but is often necessary when Vy
is too complex to determine analytically. The method does, however,
require extra cost function evaluations and is therefore suitable only to

problems where the cost may be quickly computed.

In the gradient procedure, asach

Ay = Y(Zl,t-.'z + aRi""’ZN) hd Y(i)

i i

i = 1,2,...,N

is evaluated where R, is the range estimation of Zi and 0, a constant

i
(usually 10”'), Then the norm

lay| = {I)% Ayiz}%
1=1
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is found and the incremental change (Di) for each Zi is computed,
D, = BRi(Ayi/Ay)

where B is the "step size" constant supplied by the calling program,

Vector Search

The particular vector search used is the golden-section search
(see Wilde and Beightler [2]). Using the Di's supplied by the gradient

subprogram in the case of a gradient search or using Di's given by

Dy = (2, - 2, ,)/3

i i-3

for an acceleration search, the Zi's are stepped along the vector (accord-
ing to the size of B) and the cost (y) is computed at each point. The
search proceeds by either expanding or contracting step sizes until the
optimal point along the vector is reached.

As an optimal vector point (or eventually the optimum) is
approached, 8 decreases. During each vector search, B is allowed to
decrease only a fixed number of times (3 if the cost function is "ridgy"
or 5 if it's "smooth") while there is no restriction on the number of
increases. However, if during a vector search, B decreases below a level
E selected by the program user, the Partan search is terminated.

The cost subprogram must be supplied by the user, The calling
program provides the current value of Zl’ 22, o s o 3 ZN and the subpro-
gram should return the corresponding cost. If there are constraints on

the Z.'s, they can often be entered by augmenting the cost function.

i
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Another method, which is used in this report, is to set a flag when any
constraint is violated. The flag prevents acceptance of the nonfeasible
parameter and in the next gradient calculation, augments the violating

parameter's gradient.

where AFk/IAFI {s the normalized gradient of any violated constraint
function with respect to Zj' This method was proposed by Klingman and
Himmelblau [u4].

Now that the Partan technique has been described, some of its
programming advantages are apparent. The program is relatively short,
requiring less than one hundred instructions. The core storage require-
ments are minimal since only the two previous tries are retained.

Although the Inexact determination of y and each Zj degrades the
convergence for quasi-quadratic cost functions {ideally 2N-1 steps),

_ Harkin has demonstrated that the number of steps required is still pro-
portional to the dimension N of Z. Thus, Partan is superior to normal
steepest ascent techniques.

A common non-quasi-quadratic cost function used to measure con-

vergence performance is Rosenbrock's function
- 2.2 2
y = 100(z, - 2,7)" + (1 - X,)

with 20 = (-1.2, 1) and yopt = 0. Partan will converge to y < 10"5 in

less than 180 cost function evaluations (less than 30 steps). This is
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superior to the normal steepest ascent method (does not converge), sec~
tioning method (no convergence), Spider method (>400 cost function evalu-

ations) and Simplicial method (>1200 evaluations).

The Program

The input data is read into the program via the master Partan
program. The first card contains search parameter information and the

following N cards contain the starting value and range of each Zi.

CARD 1 Col 1-10 E (termination criteria) in E10.0
Col 11-20 - A (alpha-perturbation) in E10.0
Col 21-30 - N (number of Zi's) in Il0
Col 31-40 - L (no. of constraint egs.) in Il0

CARD 2 Col 1-10 =~ 2j (initial value) in El0.0
Col 11-20 - Ry (range) in E10.0

CARD 3 Col 1-10 =~ 25 (initial value) in El0.0
Col 11-20 - Ry (range) in E10.0

CARD N

The flow charts appear on the following three pages.

The program output lists the number (N) of parameters being opti-
mized, the perturbation constant {(a) and the termination criteria (E).
Following this is a listing of the search and its result. At each point
(20,22,23,...,2p) the current step number (P) is given along with the
total number of cost function evaluations. The values of each Zi at that
point are then listed, followed by the value of the cost function (y)
there. An optional printout,that shows how progress was made during the

optimization is a listing of the step size parameter (B).



(MASTER)

READ input dagé

BCl = Z store Zo
YB = COST(Z) evaluate cost at Z_
%
B=0.1
D = GRAD(Z) evaluate grad at Zo

1

Call GOLD(Z) vector search for 7

BC1 = BC2

!

Call GOLD(Z)

‘ update for 7 2
= BC2 "—j Z - store 22 ,Z“ ’ZB , etc.
D = GRAD(Z) BCI = BC2; update BCL

¢ T

Call GOLD(Z) Call GOLD(Z)

4 T

calculate acceleration D = 2—BC.‘I.;=
vector 3
acceleration
step
(GRAD)
i=1,2,...N

———X(i) = Z(i) + A°R{i)

If J0 = 0— —— =D = GRAD(Z)
no yes

. gradient step
[gr:i:ent] if flag indicates
P constraint violation
ENTER

DF(j,kR) = RH(J) store value of j constraints
‘ at Z

increment Xi

DY(i) = COST(X) - YB; calculate the incremental

DYM = DYM + DY(i)? cost

|

DF(3j,i) = RH(j)-DF(j,kR) calculate the incremental
‘ constraint cost

G

i=1,2,...N

X(i) = z(i) reset X

'

¥ = b¥/pyMt/?

normalize DY's

DEM(3) = DFM(3) + DEM(3)°

|

B-R(i) [DY(i) + £ DF(3j,i)/DFM(Jj)
i

'RETURN

l/2]

Th



(GOLD)

Mark = 0
X
kk = -3
JJ = Jk = 1
s =f.0
( r —J— )? = Zlq}- f) - ~ ™\
B = B*1.618 Y = cost(X)
yes . _
RH = Constr(X)
- n—/
If k;— 0 s
no If Y < Yy — Y8
Jk = 1
no
If RH, > 0
] ‘
DPMj = 0
yes ‘ If kk = 0
(————————'JJ z2Jk =0 T
If X, > 0 —22 A
] }
DMy = 0 If B<E STOP
yes
¢ 1
r JJ = Jk =0 B = B/2.618
' b
o yes . . N
1f Jk =0 7 ‘ ke w05 RETORN: e
no D = D/2.618 T
| yes
8 = 1.0 * I
Mark = 1 kk = kk + 1
YE =Y 1
Z=X If s = 0—»If Jk = 0—»If k = 0 ——
yes no no
D = D-1.68 lno (step contraction)
* =% =z 7 4 ] -
IfYB> O RETURN
l } If kk > 1 RETURN
Y = Cost(X) ?
'_e—s‘If Mar‘k = 0————50——-) — -
RH = Constr(X) kk = kk + 1
{step expansion) L 1
IfY>Y8B————#5 = -3
no
lyes
(,________/ If RH, > 0 ———— B = B/1.618
j no
o yes
D = D/1.618 If B <E STOP
T YB = Y
I1f kk > 1 RETURN X I Z
kk = kk + 1 IfYB >0 RETURN
K, J : J
(uniblock search)

RETURN

+ 1

ch
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Application to Fuel Valve Problem

The plant G(s) is shown below:

1
- 8870 . “
E I X X X C C
87.5 agg/volt c F sec s |1] "'s 1
™ ™st 17500 G,(s) TR 518,08 1
; 1246 S
where
3%-82 (s+1256) E;:%g:;;g
G,(s) = -
1 [(s+197o)2 + uoso][(s+uss)2 + 11902]
and
11.995x10%t s ;ég
G.(s) =
2 (a+33u2)2 + 178202
The desired response with 500 Htz bandwidth and 0.707 damping
ratio is

(s

b L
o

2 3 (
=1/ s_ . + 67x10 : +1 s 5 + 1 s 5 + 1]
329x10 329x10 6x10 3.5x10

2 3 -2 3
. . .[ 8 + 4,.8x10 s + 1][ 8 + 4x10 . + l]

36x10°  36x10° 12.3x20°  12.3x10

to be obtained using the following configuration (Fig. 2).

c(s) = G(s) E'(s)




Controller Fuel Valve
P(s) E(s)
> B(s) > 8s)

FB Compensator

H(s)

P(s)

—

Fig. 2. Fuel Valve Block Diagram.

Uy

C(s)
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E'(s) = —g-f—g-;- E(s)

and

E(s) = R(s) - g{—:% c(s)

For a given G(s) and C(s)/R(s), H(s) and B(s) are related to P(s)

by the transformations

H(s) TH[P(S)3

and !

B(s)

TB[P(S)]\

The computer program is modified to pick P(s) such that both B(s) and
P(s) have LHP roots and such that low frequency sensitivity is optimally
small.

The coefficients of s which determine P(s) are constrained such

that P(s) is stable.

- 2 2 2

P(s) = (s + Pl)(s + st + Pa)(s + P+ Ps)(s + Pss + P7)
Thus, all (Pl’ P2, oo ey P7) must be constrained positive. To insure
C{s) is stable, the Routh-Hurwitz column coefficients are constrained
positive. Low frequency sensitivity is improved by trying to force the

polynomial B{s) to have a '"free s."
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Since Partan is constrained from entering a nonfeasible region
(where a constraint is violated), the initial point must not violate any
constraint. Experience has shown that an initial point cannot be
selected such that both P(s) and B(s) are stable without some previous
knowledge. Therefore, the Partan program has been modified so that the
program starts with only those constraints that are not violated. Using
each constraint which is violated as a cost function, each constraint is
eventually satisfied. Then the program optimizes the desired cost func-
tion (low frequency sensitivity in this case).

The progress toward the solution of the fuel valve problem can be
seen in the output listing. The listing shows that at the initial point
P = (10", 10“. 108, 10“, 108, lOu, 108) (selected arbitrarily) the

Routhian array had the form

(R,>0) (-) ) (-)
(R,>0) (-) (-) (-)

(R,>0) ) )

3
(Ru> 0) (-) (-)
(R5> 0) (-)

(R>0) ()
(R7< 0)

(R, not computed)

8

Since R., is the first negative value (-2.123x102°) reached in the
first column, the cost function y is set equal to R,, and the Partan

search is initiated. After one gradient calculation and the resulting
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vector search, the cost function (R7) is made positive (5.3u9xlolg) at
some point P' on the gradient.

The Routhian array is now checked for sign changes beyond R7 and

the last coefficient, RB’ is found negative (-l&slxlozs). Starting at

21 = Z'o. a single gradient search forces RB’ the new cost function, pos-

itive (1.402x1023) at P". Thus, after twenty function evaluations, the
Routh Table indicates that for the stable polynomial P(s) given by the
coefficient P", the polynomial B(s) is also stable (LHP roots).

For good low frequency sensitivity, it is desirable that the
zeroth power of s coefficient be zero. This coefficient is selected as
the cost function, and its initial value at P" is 1.653x1028. After 13

. acceleration and gradient steps involving 116 function evaluations, this

coefficient is reduced 16 orders of magnitude to 1.002x1012. The poly-

nomial P(s) is

7 6 5

(s + 12,310)(s2 + 15.450s + 433)° = s/ + 5.9x10"s® + 1.29x10%

15 2 1l

+ 3.82x10%°62 + 1.07x10%%s + 1.002x10%?

+ 1.25x10%%" ¢ 4.5ux10285°

and the corresponding B(s) is

37 + S.uxlcuse + l.lgxlogss + l.38x10133u

1

+ 9.15x10%%° + 3.53x10 3

2052 + 8.82x102 s + l.lelO27

The result shows that the improvement of low frequency sensitiv-

ity in the output has been achieved by a controller with three poles at
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about 0.003 sec"l, and the other poles at frequencies greater tham 12,000
sec-l. The low frequency gain will be on the order of 1015.

The result also indicates how this search technique can be
improved and how very high order problems of this type can be treated.
Since the initial guess P was a polynomial with a neg-real root and a
third order, complex pair of roots, the number of search parameters
could actually have been reduced to three. This would have reduced com-
putation time for each of the six gradient calculations by a factor of

3/7, since fewer perturbations are required. Also, if P(s) were given

as 13th order instead of 7th order, the initial guess could have been

(s + 10,000)(s? + 10,0005 + 10°)°

i.e., still only three search parameters. There is, however, no guaran-
tee that a solution for such a P(s) exists., If the search failed to con-

verge to a stable B(s), the initial guess could be generalized to

(s + 10,000)(s? + 10,0008 + 10%)3(s? + 10,0008 + 2x10%)3
and the search conducted with five parameters, etc.
Conclusion

Partan is an efficient program, which can be modified to handle
complicated, constrained cost functions. It is especially suited to
problems where the cost is explicit but the gradients must be computed by

perturbation.
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OGRAMN MASTEY (THPUT, EOUAT T

. 50

"mmwm"";FOMMON Z110) 0 (T0)oNs BqMoYHeLsoFM(ZO)eJJ“”"oKR RH(Q)WMW'WM_'M““MWM”

NIMENSION R(10)+RC1(10)¢BC2(10)

READ 1eEsAoNol o (Z{T)sR(I)oIsLloN)
__FORMAT (PF10,092110/(2E10,0))

T PRINT 29NsAsE

- FORMAT(*IPARTAN SEARCH IN“IZ* VARIABLES#//% WITH RANGE FRACTION A
1= #E7.0% AND TERMINATION CRITERIA E =®#ET7,0)
i Nl 2N ¢ 1 _
M o= 1
— KR = 1
95 J 0
e DO, \___3 I.= 1sL _—
3 DFM(I) = 1,0
AU 11 o JC. 00 G- W Y. —
4 RC1(I) = Z(I)
940 KR. 2 KR ¢ 1

IF (KReGTeN1) STOP
PALL COSTS(KReZLyYBoRH)

TF (YBeGToe 0,0) GO TO 90
_PRINT  6edoM 9(Z(I)el = 19N)s¥YB

R = 0ol
CALL_GRAD(AsR)

CALL GOLD(Es1)

U B — — .
5 PRINT  6edeM o (Z{I)el = 14N)oYB
6 __FORMATY (wop#73% EVALUATION =#14/(10F13s3))

IF (YB.GT« 040) GO T 95
no 7. 1. = 1,

7 RC2(I1) = Z«(I)
SRS ML ¢ N, A |

CALL GRAD(AsR)
e CALL_GOLD(E9))

PRINT GoJdeM 9 (Z(I)sl = 1eN)oVYB
TF _(YBeGTa 0,0) 60 TQ 9%

IF (JJaEQe0) GO TO 9
___________ nNO. B 1. = 1aN

8 N{I) = (Z(1) = BC1(I))/3,0
e e CALL_GOLD(Es0)

IF (YBeGTa 0.0) GO TO 95
G0.70..10

9 CALL GRAD(AsR)
_______________ CALL._GOLD(Eel)

IF (YBeGTe 0,0) GO TO 95
-.-30 NO._1L_I_ = _1sN

11 8C1(I) = BC2(I)
J o= J ¢ 1

IF(JoLTe 25) GO TO 5
- _§TOP

END




e IF (BaLTE). 60 T0 17

, G0 TO 15 T
.12 _____CONTINGE }
NO 125 J = 14N
o TF (X(J)aGTe0.0) GO TO 125
R = B/1.618034
e YF (BalLToeE) GO TOQ 17
60 TO 15 N
125 _CONTINUE
ye = ¥ ’
———e D013 1 = 1N e
13 7(1) = X(I)
e IF _(YB. 06T0_000)_ RETURN —
0 TO 15
b S = = 8 -
15 KK = KK + 1 )
— IFAKKeGE1)  RETURN
N0 16 1 = 3N
16 DAI) = D(1)/1.618034 I

______________________________________________________________

18 FORMAT (# EVALUATION =#14/(10E13,3))

STOP
END




T QUBROUTINE GRAD(AGRY™
__FOMMON Z(10)9D(10) sNeBoMsYBolL sDFM(20) 9JJ

X(1) = Z2(1)
TPF(JeKRY = RH(D)

52

9KRaRH(9)

MIMENSTON X(10)9DY(10)sR(10)sDF (10510
no 1 1 = 19

N0 2 J = 14KR

ﬁYM = 060

I =1

X(I) = Z(I) + A®R(I)

CALL COSTS (KR9 X9 Y9 RH)
DY(I) z Y « YB

NYM = OYM ¢ DY (I)##2

D0 & J = 1,KR

IF _(DFM(J)eNEe0Oo0) GO TO 4

DF (Jol) = RH(J) = DF(JoKR)
CONTINUE

X(I) = Z(D)
I =1 ¢ 1

TF(I.LE.N) GO TO 3

DYM = SQRT(DYM)

N0 5 1 = 14N
N(I) = DY(I)/DYM

NO 8 J = 14KR
IF_(DFM(J) 4NEo0e0) GO TO 8

no 6 1 14N
DFM(J) DFM(J) + DF(Jel)es2

i

NFEM ) SQRT(DFM(J))
DO.7 I = 1,N

D(IY = D(TY & DF(JeTYZDFMTD)
CONT INUE

NO 785 J = 1N

!Fm(p»Fﬁ(d+7)qEQ00'o) Q(J) 2 D(J) ¢+ 1.0

75 CONTINUE
— NO. 9 1.3 1N
9 ND(I) = B¥R(I)®D(])

RETURN

END
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COMMGN Z(}o[»D(lO)9Ng89MoYBeL¢DFM(20)9JJ oKRGRH(9)
TTDIMENSTON X(10)

MARK = 0

KK 8 =3

g R

DO 2 1 = 14N e
XY = Z(TY ¢ O
o PQINT 1025R e
102 FORMAT (20x%R  #E13.5)
CﬁLL COSTS (KReXeYoRH)
Ma Me ]
TF(YeLEsYR) GO TO
JK = 1
N0 3 J = 34KR i
F (RH(J)QGT 0e0) GO TO 3
_NFM(J) = 0,0
JJ o= JK = 0
.3 CONTINUE
NO 35 'J = 1N
YF(X(J);GT 0,0) GO TO 35
NFMUJe7) = 0,0

i
1 -

o s s s bt

35 CONTINUE
1F (JK,EQe0) GO TO 5
S = 100
YR = Y
nO 4 I = 1aN
\ 20D = Xy
4 NI = 0(1)#1.618034
oo IF_LYB 46T, 040) RETURN
TF(MARKSNEL0) GO TO 5
YF(K NEoQ) B = B#],618034

G0 T0 1 :
.5 PO 6 I = 1sN
é NI = DAIY/2.618034
MARK = 1

TF(S.NEe0o0) GO TO 10
TE. (JKaEQs0) GO TO 7
TF(K.ERL0) 899

T KK'm KK + 1
TF (KKsEQs0) RETURN
8 F B = B/2.618034
. IF (Bo.LT«E) GO TO 17
6070 13
9 KK = KK + 1 .
o IF_(KKsEQe0) RETURN
GO TO 1

A0 N0 11 1 = 1eN
11 X(T) = Z(1) « Se0(I)

CALL COSTS(KR9XeYyRH)
Moz M oe ] v
IF(YsLToYR) GO TO 14
PO 12 'J = 3eKR

___________ JF. ARH(J)a6Ta0.01 GO TO 12
B = B/1.618034
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TTTTTTTTTTTQUARQUTINE COSTS(KRsZeYeRH) T T

CNDIMENSION Z(7)oB(B)9T(8)eRH(9)9R(9:9) e
TPATA T/1e00™60130E39]1e536F80=20422E12540221E169»7,395E20
151 301E254=2, 2B83E29/¢R/81%0+0/
' B(1) = 1.0
______________ R(2) = Z(1)
NO 1 K = 3,8
1 R(K) = 040 o N
T 3"‘)_::1‘; 3
Je = 2#J :
nao 21 = 192

2 R(K) = B(K) +B(R=1)1%Z(J2) ¢ B(K=2)®Z(J2+]1)
3 R(2) = B(2) + Z(J2)

‘AR = =B (8)

PO 45 1 = 198

_____________ BB = 0,0

DO & K 3 1ed
M= J 4+l = K

T4 AR = BH ¢ B(K)®T(M)
45 ptJ)_= BR .
\J ‘. - 1
PO. 5 1 ® 14 .
J =2
R{1s1) = B(J)
5 B(2y1) = B(JseT)

N0 7 J = 24KR
LIM = KR ¢ 2 = J
DO 6 1 = 2.LIM
6 P(Jelol=l) = R(Jwlpl) = (R(leel)&ﬁ(dsl))/R(dol)
o IF (R(J*191)eEQeD40) R(Jelel) = ,00001
7 CONTINUE
e DO 8 1 = 1.KR
8 RHII) = R(Iel)
- R{9s1) = _RR
Y = R(KR¢1lel)
RETURN
END




PATTERN SEARCH

Introduction

This report describes the use of an optimizing search procedure for
the design of a control system where some of the state variables of the
system are unavailable. This design procedure is useful in achieving an
approximate closed-loop transfer function rather than obtaining an exact
closed-loop transfer function. The advantage of this procedure is that
the complexity of the compensation is reduced over the state variable
design. This procedure is applied to the design of an inlet control sys-
tem which minimizes the response of the shock wave position to pressure
disturbances at the compressor. The search procedure described starts
with ah initial choice of parameters and makes small changes in these
parameters until an improvement is obtained. Then larger steps are made
until no further improvement is obtained. When the larger steps are not
fruitful, successively smaller steps are taken. At this point the search
procedure has found a local minimum.

The advantage of this type of procedure over a more classical design
procedure is its extreme flexibility. The design may include constraints
on the parameters, a variety of objectives, and a variety of parameters
in the compensator. The performance objectives may include either time
domain or frequency domain parameters. Initial design considerations may
be used to select an initial choice of parameters. This procedure is
therefore more adaptable to practical applications where all the state

55



56

variables are unavailable or other limitations which make other design

procedures impractical.

Pattern Search

The pattern search is based on the following philosophy:
1. If an improvement is made in a given direction, con-
tinue to move in that direction.
2, If an improvement is made with a small change in param-
eters, try a bigger change.
The pattern search has two modes of operation depending on the
number of previous successes or failures:

1. Mode 1. Successful Move.

If a successful move has been made, then try
another larger move in the same direction. An addi-
tional increment to the left or right is added in if
the previous successful move was made by altering the
direction of the move. If no Succeés is made, the next
mode is used.

2., Mode 2., Local Search.

Small moves are made in the same direction as the
last success and at right anglés to this direction., If
one or more successes are made after these moves, then
the system returns to Mode 1. If no improvement is
made, a smaller step is tried. If more than ten reduc-
tions in step size are made, the search is terminated

on the presumption that a local minimum has been found.
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The following application is to demonstrate the use
of this procedure for a jet engine control systen.
Details of the computer program are given in the last

section.

The 40-60 Inlet Control Problem

The outline of the system is shown in Fig. 1, and the 40-60 inlet
control system is shown in block diagram form in Fig. 2. It is desired
to minimize the response of the shock wave position x to disturbances at
the compressor side of the inlet. In the block diagram the noise input
occurs in front of G(s) which describes the dynamics of the inlet. The
exit pressure Pe is related to the undelayed shock position by the trans-
fer function P(s). The control of the shock position is affected by the
shuntiné of air through six bypass doors whose dynamics are D(s). The
response of the system to disturbances when no control is present is
shown in Fig. 3. The objective of the system is to provide a compensator
whose dynamics are C(s) that will result in a lower response than G(s)

shown in Fig. 3.

G(s) = $388.12)(s+80,3+§172.20)(s+173.16+1332,63)(s+75.71+§575.04)
(s+46)(s+44,58+5281.49)(s+84,22+§477.63)(s+130.2423738.61

(s+82,.8+j946.38)
(s+191.02+31083.29)

) = s+1010
~ 1010

P(s
20

1.3073x10
3 2

D(s) = 5
s(s+2000)(s+318.5tj1899)(s +3890.38s

lO)

+2.1038x10 s+1.76187x10
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Performance Specification

A transfer function is specified by the user which determines the
desired response of the system. The compensator C(s) which has two poles
and two zeros is selected to minimize the mean square difference between
the desired transfer function and the actual closed-loop transfer func-
tion over all frequencies. The actual transfer function should be stable,
The parameters which specify the compensator are constrained so that the
system is stable. The subroutine PLANT is used to construct the fixed
part of the actual transfer function. The subroutine ERR constructs the
difference between the actual transfer function and the desired transfer
~ function for any particular gain, pole position, and zero position of
C(s). The subroutine INTSQ evaluates the integral of the magnitude
squared of the error over all frequencies. The details of these programs

are included in the end of this section.

Computer Results

The desired transfer function, TD(s), was selected to be

_ 388.12s
™(S) = 153307 (s7386.12)

The actual transfer function T(s) between the pressure disturbance and

the undelayed shock position is given by

- G(s)
T(8) = T3EEIB(s)C(2ID(8)
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If the numerator of G(s) is written GN and the denominator is written GD,
and if the poles of C(s) are selected to be very large, then C(s) is
approximately given by the numerator polynomial, C. The doors are given
by the ratio DN/DD and the pressure transducer by P. The actual transfer

function becomes

A GN DD
T(8) = 5IaEHTON~P-CH DN

The numerator TN is independent of the choice of the compensator.
It is calculated by the subroutine PLANT. Similarly, the following pro-

ducts are calculated in the same subroutine:
GP(s) = GN*P*DN
GD(s) = D*GD
Then whenever a new value for C(s) is chosen where

C(s) = CN = §%§% [X(3) + x(2)s + s%7,

the actual transfer function becomes

N

Ts) = v+ opoon-

The procedure is carried out in the subroutine ERR. The error is formed

from the integral of

_ DN(s) _ TN(s) _ DN-TD-DD+TN
™(s) - T(8) = 5505y - T5(s) * — DO°1D
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The subroutine INTSQ is used to calculate the integral of the squared
magnitude of the above polynomial. If the syétem is unstable, it is
detected by the subroutine ROUTH and a large value of the objective func-
tion is returned.
The results of the computer program are the compensator whose

parameters are

(s? + 0.6°1578s + 15782)

15782

C(s) = 1luly

This compensator yields the closed-loop transfer function shown
in Fig. 4. The response is significantly better than the open-loop
response at frequencies below 100 Hz but approximately 10 db worse in the
unity gain crossover region. The problem is more evident from a study of
this result, A large feedback is needed at frequencies below 100 Hz.
However, at frequencies above 100 Hz, the doors have a rapidly decreasing
response which creates a very 1arge.phase shift at the point where the
loop gain is unity which results in an unstable system. Either the phase
shift must be decreased in magnitude or the gain crossover must be at a
lower frequency. If the feedback gain is reduced, the system will respond
just as an open-loop system at frequencies above the unity gain point
which is not entirely satisfactory. By adding more zeros in the region

given by C(s), a better response is possible, as shown in Fig. 5.

The numerator of compensator associated with Fig. 5 is:

c(s) = 82010 (s + 0.8-1987s + 1987%)%(s + 396u)
3964(1987)"
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By adding five zeros, the response is always below -10 db and is smaller

than -20 db for all frequencies below 100 Hz.

5

Computer Program

The relations between the subroutines of this program are shown
in Fig. 6. The transfer functions associated with Fig. 2 which are inde-~
pendent of C(s) are computed in the subroutine PLANT for use in calculat-
ing T(s). The initial values of the parameters are used to provide a
starting point for the pattern search. When a new set of parameters are
selected, the subroutine ERR uses these new values to calculate the
transfer function T(s). This transfer function is subtracted from the
desired transfer function D(s) and the resulting error function E(s) is
squared and integrated by the subroutine INTSQ. INTSQ uses the subrou-
tine POLYSQ to calculate the square of the numerator of E(s). If the
resulting integral Y is bigger, a local search in the vicinity of the
last success is made. Successively smaller steps are taken until no fur-
ther improvement is made.

A listing of the complete program follows.



INLET

Initialize Parametersd

!
1
$
}

{ PLANT

Compute initial

transfer function

PATTERN

pattern search

Conduct

AN

\\§uccessfu1 Move

Accelerated move

Failure

local search

Conduct

\ N
LCLSR )<’

o

Increasant X's

AN

Fig. 6.

\,

~
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ERR

Compute

TD(s)-T(s)

INTSQ

Compute

integral/error

Print Y

if success

General Flow Diagram of Pattern Search Program.




025604
gooeol
0Bo0007
000004
6gneos
£6oco?
000010
6000172
000C1%
0C0C17

PROGHKAY TANLET{IMPLUTs0UIPUT)

COYMON GN{20) oGP {20 o TN(Z20) o UN(10)500(¢10)
NIVENSTICN BASE(R)srcAD(3) :
Catl, PLANT

Basz(1)=141%a

FASE(2)Y=G4Ts
HEAD¢LY=1000,
)"EAU(E):}.”QBQ

CALL PATERN (2¢BASEsHEAD)
STYCP

END

€8



0040C12
000C13
000015
003620
000021
000cC23
000027
000032
000033
000035
000041
000044
000045
000047

000053
000054
00005¢
000061
000062
000064

000070 -
000073

000074
000076
000102
000105
00610686
000110
000114
000117
000120
000122

000126
000127
000130
000132
000138
000136
000140
000144
000145
000147
000150
000152

SHRAGUTING PLANT

COCMAN CN20) 562 (20) s TN (200 ¢ DN

CIMANSTION GNT(16)9GN2(10)sGN(I0) 5GD1(10)9GD2(10)sP(10) s

ITTLINY D2 (10)-,D(10)

NUVERATCR CF PRESSURE TRANSDUCER

Criz=l3nT73F20

P{Y)=DN

P(?2)=Dn/1010,

NUMERATCK CF INLET DYNAMICS

CR1(1) {17222+ B0,3%%2)0388,12
GNY (2)=80.3*?o*388912
EN1(3)=3Rn,12
GN2(1)1={173.16%%2+332.63%%2)
GNP (2)=1T73416%2,

ChN2{(3)=1.

CaLlL PLYMLT(GN1+3sGNZ2s3sGNy0)

GN1(1)=75,71#42¢575,04%%2
CN1(2)=7E,7142,

GN1(3)=1.

CALL PLYMLT(GN1s39CNsSsGN2y0)
CGN1(])=R2 , E#42+546,38%%2

CN1(2)=82,8%2,

GN1(3)=1,

CaLll, PLYNMLT (GN1¢3¢GN2979GN9 0}
DENOMINATOR OF INLET DYNAMICS

CN1(1)=46,

Gl (2=,

GDU1) =44 ,58%#2+28L e 14%%2
GR(2)Y=44 ,58%2,

GD(3)=1,

CALL PLYMLT{GN1,29CGD93+sGD240)
GN1L(1)2RG 2244244 TT 463942
GN1(2)=84,22%2,

CALL PLYVMLTI(GD1s39GD2949GDs0)
GO1(1)2130.244#24738,61%%2

GNL(2)=13n.24%2,

GD1(3)=1.

CALL PLYMILT(GD1+3+GDs69GD250 )
CN (1)=1614024#22+1083.29%02
CD (2)=21G1.02%#2,

CD (3)=1,

CALL PLYMLTI(GD +39GD238+4GD190)
DENOMINATOR OF INLET DOQORS
DI1(1)=N,

£1(2)=2000.

D] (3):1-
D{1)=318,5#4#2+4]1899,,%%2
0(2)331805*2.

D(3)=1a

CALL PLYNILT (D1+39D93+0240)
Ci1(ly=1.74187E10

D1(2)s2,1038E7

D1(3)=3890.38

Plté)y=1.

CalLl PLYMLT(Cl9494D2959000)
CEFINE NUMERATOR OF CLOSED LOOCP

16GYsDLL0)

TRANSFER FUNCTION
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¢o0172
COCLT4
6C0Gza0
000200
Q06e0¢e
000z03
033608
060c07
000224
00uzes
000225

10

Call PLYMETUIGN G085 TN 0
Catl FLYVLT (GD1e10sDoBeGDs0)
CALL PLYMLT{GNs9sP9250F90)
No 160 1I=11e18
CR(IY=0,

PRN{1Y=0o

NN(2)=288,12

ND{l)Y==1164,36

DR (2)==418,12

- DB(3)==~1.

FRINT 200,CG0«GP¢TNsDNoDD
RETURN

FORMAT (1Xel0E13.9)

END

ﬁo-




000011
000011
000012
000014
000016
000022
000024
000030
000033
00003%
000047
000047

OO0 M

10
11
12

13

SUARAUTINEG  PLYMLT (AsLseBeMaColNy

MULTIPLY ONE POLYNOHMIAL sSY ANOTHER

7L
DEFINITION CF SYMBOLS IN ARGUMENT LIST

A(T)e MULTTFLICAND COEFFICIENTS IN THEORDER A(7) #S#e(i=1)

L ANLVMPREWR OF COEFFICIENTS OF A
R{T)e MULTIRPLIER COEFFICIENTS 1IN THE ORUER B(I)u#s*#(I=1)
2 NUMEER QF COEFFICIENTS OF B
CtI)e PROCUCT COLFFICIENTS IN THE ORDER C{l)#Sau(l=l)
Ny ANUMRER OF COEFFICIENTS OF C
KEMARKS

IF A=0e C(I) SET TQO ZERO AND PRODUCT FORMEDs OTHERWISE THE PRODU
ANDG SUM NEWC= QLD C + A®#B IS FORMED. §

DIMENSICN A(10)s B(10)s C(20)
LPM=L+Va]

IF (N) 10910412

CO 11 J=1+LPM
Ctdy=ne0

NC 13 id=1+LPM
MAX=MAXO (Jv1l=Myl)
MINSMINO(L o)
CO 13 I=MAX.MIN
C(=Aa(l)#R(Jel=]) + C(JI)
RETURN
END



SURSOUTINEG PATERN (NsBASE«HEAD)

JAG006 NIMENSTCON RASE(10)erEAD(LO) o TEMP(10)»CURVE(L10)
060006¢ Ko Tzl
0530066 TCul=9 72
0noeao7 KECNR=
g00C10 MAXKFN=T0D
gooo12 POINT 700
GG3C1l5 CALL FRE(READYH)
0Qo0c21% ¢0 T0 720
C ACCELFRATEC MOVE
000024 10 vonE=1
030028 IcUT=0
000026 S £n 11 I=1sN
000030 11 TEMP(T)=2,4% HEAD{I)~BASE(I)+CURVE(I)
000040 CALL FERH(TEMPLYT)
0600042 KFCNS=KFCNS+]
000044 TF(KPRANT&FGoel) PRINT 2029MODEsYTy (TEMP(I)9I=1aN)
000¢72 IF(YT=YH) 129204520
C SUCCESSFUL. MOVE, SPRING FORWARD
00007% 12 DD 13 I=1.N ) '
000077 RASE(I)shFAD(I)
000101 13 FEAD(D)=TEMPLD)
000108 PRINT 201 +KFCNSsMODEsYTe (HEAD(I)yI=1 N)
000131 YH=YT
000133 Go 7o ©
C FATLURE G0 TO LOCAL SEARCH
000135 20 SPEEN=],
000136 MONE=2 ,
000140 CALL LCLSR{NHEADsBASEsCURVEYSPEED s ISUCC+MODEsKFCNSsYHIKPRNT)
000151 IF(KFCNS ,CT+MAXKFN) RETURN
000156 IF{ISUCCY 31931910
C MANY FAILURESy CuUT STEPSIZE
000160 , 31 SPEEDN=0.
000161, MODE=4
000162 CatL LCLSR (N, HEAD,BASE,CURVEoSPEEDyISUCC MODE yKFCNSsYHaKPRNT) -
000174 IF(ISUCC) 41441410
000200 41 MODE=6
000201 IF(ICUTLGTL10) 6O TO 99
000208 ICUT=ICUT 1
000206 DO 42 TI=1a.MN
000207 42 RASE(I) = o5 # RASE(I)+,S%HEAD(])
000z15 - PRINT 201, KFCNSsMODEs Y H s (BASE(I) 9 I=1oN)
000241 GO TO 31
0007244 88 PRINT 203
000250 RFTURN
000251 200 FORMAT (#1 PATTERN SEARCH HAS BEEN CALLED #//# KFCNS MQDE# &X
1#0CSTREX#PARAMETER VALUESH)
000251 201 FORMAT (214910(El2e4))
000251 202 FORMAT(# TEMP#,14910(E12.4))
000251 203 FORMAT (% A LOCAL MAXIMUM HAS BEEN REACHED #)

000251 END



Cudlls

300615
000015

0CcoC17
$20029
000021
006034
0G003¢
000C73
000075

-
600100
000102
000116
000120
000158
000157
000162

000164
000165

000176

000200
000235
000c37

000242
000243

000245
000246

000251
000254
000256
000260
000261
000262
000264
000271
000272
000274
000331
000333

000236
000240
000346
000350
000352
000407
000411
000414

a2l

22

23

24

26

30

32
50
51

52
53

58

SURROUTTINE LCLSR (NgHEADsBASE s CURVESSPEED ISUCCyMUDEsKFCNSyYHe
1 KFhNTY

DIVENSICN BASE(10) s HEADCIO)Y s TEMP(10) s PERF {10} sCURVE(1D)
Local,  SEARCH

1< C=0

YREST=Yk

TRY FORwAKD MOVE

oo 2} T=19A

CURVF (1) ="

TEMRB(T)=rEAD(I) + {44+ SPEED) % (HEAD(]) ~BASE(1))
CaLl FRR{TEMPLYT)

IF(KPRAT,FQel) PRINT 2029MODEyYTo (TEMP (1) s1= 1Ny
KFCNS=KFCAS#]

TE (YT=Ykr) 26922922

FATLIIRE #MCVE BACK

no 23 I=zteN
TEMP(T)=rFAD(])+ (SPEED=+4) # (HEAD{I)=BASE(I))
CALL FRR({TEMPLYT)

IF(KPRATLFGel) PRINT 202eMODESYTH(TEMP(I)sI=1sN)
KFCNS=KFCNS+]

TF(YT=YH)26924524 -

IF(SPEFEC.LEaOs) GO TO 30

ANOTHER FATLURE,MOVE BACK

O 25 TI=14N

TEVP(IY=FFAD(]) +SPEED®(HEAD(I)~BASE(I]))

CALL ERR(TEMP,LYT)

IF(KPRAT.FGel) PRINT 2029MODEsYTo(TEMP(I)sI=19N)
KFCNS=KFCNS+)

IF(YT=YH) 26430430

SUCCESS G0 TO ORTHOGONAL SEARCH

TsuCC=1

YREST=YT

CRTHOGONAL SEARCH

NORTH=] ,

IFIN.GT.2) GO TO 32

MOVE LFFTY .

PERP(1)=(= HEAD(2) + BASE(2))%.4

PERP (2= (HEAD(1) = BASE(1)) + ,4

NORTH=NCRTHS) :

73

GO TO B0

RETURN

0O B1 I=1.eh

TEMP(I)= TEMP(I) <*PERP(I)
CM=1,

CALL ERR(TEMPLYT) )
IF(KPRNT.FGel) PRINT ZOZQMODE'YTv(TEMP(I)’I 1oN)
KFCNS=KFCNS*1

IF (YT =YBEST ) 55952452

FATLURE 4 ¥NOVE RIGHT .

£O 93 I=1eN

TEMP(TII=STENP (I)=2%PERP(I])

CMzw],

Catl ERR(TEMP,LYT)

IF(KPRATFGel) PRINT 2029MODE YT (TEMP(I)oI=19N)
KFCNS=KFCNS+]

IFC YT _=YBEST ) 585957457

DO SA Is1eN



Go0alé 56 CUBVF({Ty=z CMapERrP (1) + CURVE(ID)

G004 24 ISuUCC=1
060425 YREST=YT
000427 GO T0 ®g
C FATLIRE ¢ RESTORE TEMP
Go0427 7 0 BER I=xl.N 74
00431 SE TEMP(TY=TFMP (1) +PERP(I)
200436 55 IF(NORTHLTeNY GO TO 32
000440 A TF{ISUCC.FGaN) GO TO 70
0004461 61 00 62  T=1.N
000643 BASE (1)=<EAD(I)
GA04 %6 62 FEAR(T)=TFNE(])
0004n2 PRINT 2014 KFCNS9MODEoYBEST;(HEAD(I)’I 1oN) o (CURVE(T) sI=19N) )
000812 YRz=YREST -
00014 BFTURN
000%15 70 VONE=MCDES]
000517 ANRCT=1
¢ NOVE WALF LEFT
000520 IF (N,LE4?) GO TO 80
000826 72 RFETURN ' ’
000827 80 CO 81 I=1eN :
000531 81 TENMP(T)=TEMP(I) ¢(PERP(I)+s¢  #(HEAD(I)=BASE(I)))%e707
Q00%44 ANROT=NROT 1 N
000846 CM=z1,
000547 CALL ERR(TEMPSYT)
000551 TF(KPRNT.FGel) PRINT 2029yMODEsYTy (TEMP(I) s I=1oN)
000606 KFCNS=KFCNS+]
000610 IF (YT - YBEST)  85.82+82
c FATLUREs MCVE HALF RIGHT
000€13 82 D0 83 I=1,A
000615 83 TEMP(I)=TENP(I)=1e414%PERP(I)
000€23 CMz=1,
000625 . CALL ERR(TEMP,YT)
000627 IF (KPRAT4FGal) PRINT 2024sMODEsYTy (TEMP (1) 9I=19N)
000664 KFCANS=KFCNS#+1
000666 IF (YT -~YBEST ) 85987487
C SUCCESS
000€7]) 85 ISUCC=1
000672 YREST=YT
000674 £O 86 I=14N
600675 86 CURVE (I)=CURVE(I)® CM# (PERP(I) «e2 #(HEAD(I)=BASE(I)))®,70]
000711 ¢o To 289
C RESTORE TEMP
000712 87 DO 88 T=l,N
000714 88 TEMP(I) = TEMP(I) =(=PERP(I)¢,2 #(HEAD(I)=BASE(I)))®.707
000727 86 IF (NRCT.LTeN) GO TO 72
000731 90 IF(ISUCC) 81491461
000733 51 RETURN
000734 201 FORMAT (214910(E1244))
000734 202 FORMAT (& TEMP#,14910(E1244))

000734 END



gaoces
000008
Gedoos
0God0e
0G0C07
000011
00GC14
0¢0020
060023
000030
000032
000035
000040
000044
060850
000054
000061
000062

10

SURKNOUTINE ERR(XsY)

CCMMON GN(20) «GP(20) s TN(20) sDN(10)+DD(1C)
CIVMENSTICA TO(20)9C(10) o X({10)2EN(20) sED(20) _
X(3)=2.5F4 75
Clly=X{1)
C(2)=X {1y #X(2)/X(3)
C(3)=X(1)Yy/%X(3)
Catl PLYNLT(Cs3+sGPs159T00)
DO 10 T=1.17
TO(IY=TO(1)+GD(])
CALLL RCUTK (TDsYel7)
Y=Y&].F100
IF (YeBEe140) RETURN
Calll PLYMLT(DN29TDs1T79ENQ)
CaLl, PLYMLT(DDy3sTNel69sEN,18)
CALL PLYMLT (DD939TD9s174ED90Q)
CALL INTSR(EDWEN919Y)
RETURN:
END



SURRQUTIAF RCUTH (XeYsel)

000006 NIMENSTCN X(20)4A(20510)

EVEVIVR ) CATA A/200%060/

Q00006 Y = J =3 0

000C10 MoaLow 1 76
600012 CO 1 T = 1¢Me2

000013 NEE N E!

-0000158 A{lsedy = X(1)

0800721 1 A(2sd) = X(I + 1)

550027 TF (L - 26J) 3432

000C31 é Af{led #+ 1) = X{L)

006003¢ 3 J = 7

000037 N=Mz= (|, + 117240

G0O0044 4 IF (A(Jel) oA (Jm191))T79595

000050 5 IF {JeEGaAL) KETURN

0600C52 CO 6 1 = 24M

000054 6 Ald ¢ 1ol = 1) = AlJ = 19e]) = (A(J = 1ol)#A(JeI))/A(J0 1)
000102 IF (AQGJ + 19)1)4EQe0e0)A(J ¢ 191) = 0,000001
000105 W od el

000107 Mz N+ 1 = J/2,0

000114 - GO T0 &

000114 7 ¥ = 1,0

000115 RETURN

000116 END

‘%”‘.“.



03007

03007
150007
100¢C11
100015
100021
08024
1306030
100047
100051
100054
100056
100060
)0006°2
100065
JO0Q70
300070
100072
300077
100100
100101
300104
1001.04

300106 -

200110
000112
000114
000117
pool124
000127
000134
000140
000141

000141
000141

SURKOUTINE INTSQ{AsCseNsS)

CIMENSTCN BU(20)A(20)C(20)
FETURNS SzINTEGRAL OF C(S)IuC(=S)/A(S)®#A(~S) TO MAIN PROGRAM,
R{S) HAS Ne] TERMSe A(S) HAS N TERMS, 77
R{T) 1% CCEFa OF S#8(21=2)
C(I) 1S CQEF. OF S#%#(l=])
IF THE LCWER QRDER DENe AND NUM, COEFF, ARE SMALL (LESS THAN D) Tht
NIVIDE RCTH NUM, AND DENe BY Swep,
K=1
D=1 0E=¢
IF (ABS({A(1))~D) 2+2+20
IF (ABS(C(1))=D) 494420
TF (Kel) G4946
PRINT 200
PRINT 201448(1)y C(1)
Kz=K+)
Nz=h=} ;
DO 10 I=1,N
A(T)=A(1+])
IF({1=N) 8310110
8 C(I)=C(Ie1)
10 CONTINUE
¢co T0 1
20 CALL PLYSQ (CeNyB)
NM2=Ne2
DO S50 K=l,AM2
ANK=NeK
BA=B (NK) /A (NK+1)
AAz(,
IF(KsECS1) CO TO 40
AA=A {NK+2) /A (NK+])
40 NMK= (N=K) /2
CO S0 I=1, NMK
NKI=NK=24T14]
B(NKeI)=2R (NKa]) =BA#A(NK])
A(NKT+1)sA(NKI+]1)=AARA(NK])
50 CONTINUE
S= ABS(B(I)/(Z.*A(Z)*A(I)))
RETURN
200 FORMAT (%0 THE FOLLOWING COEFFe WERE FOUND TO BE SMALL AND CANCELL
IED IN THE AUMERATOR AND DENOMINATOR®)

OOOOON

oD &N e

201 FORMAT (# THE DENOMINATOR COEFF,.=% E10.3 # THE NUMERATOR COEFF,

=% E1043)
- END



000006

000006
o000
000012
000613
000014
000016
000020
000022
000037
000040
000042
000043
000044
000046
000051
000053
000085
000071
000072

OO0

20

30

SURRQUTINF PLYSG (CaNeB)

CIVMENSICN ClaQ)B(40)

RETURNS B1(S) = C(S5)#C{=S) TO MAIN PROGRAM,.
BET) 1S COEFa. OF Swul=1 IN B(S),

C{I) IS CCEF, OF Sua]l=]l IN C(S),

Ne] IS NUMBER OF COEF. IN B(S) AND C(S)e
Niz{N=1)/7

CO 20 I=1e¢N}

NO :-i
R{l)=0. )
[1 = 241=)

No 20 Kz, JII

MO = wldiv0
ReI)=B(])+MO%C(K)H#C(2%]=K)
AM]=Na]

AN2zhlel )

£O 30 I=sN?eNM]

IIN:E#T-ANI é
B(I)=Oo o r
MOz (=]1) %4 NM]

DO 30 K=ITNsNM]

MO = «18MO
B(I)=R(])+MO#C(K)HC(2¥]=K)
RETURN

END

78



VARIABLE METRIC

Introduction

This report describes the variable metric optimization scheme
(hereafter referred to as variable metrics) and its application to the
design problem for an inlet control system of an air-breathing jet engine,.
The application strategy seeks to force the total closed-loop response of
the system to match a desired frequency response over a range of frequen-
cies from 1 cps to 151 cps. Variable metrics is used to minimize the
total squared error over this range of frequencies. Successful, physic-
ally realizable control of the inlet system is achieved for a variety of
parameter values, with system stability checked in each case.

The general type of problem, to which variable metrics is appli-
éable, is the optimization of a scalar-valued function y of N real vari-
ables xj, with respect to the N values of these xj: an N-dimensional
optimization problem. '"y" is an arbitrary performance index, descriptive
of the effectiveness of a control system. Thus, scalar optimization
‘techniques are of rather general applicability in the design of optimal
control systems.

Three distinct advantages of variable metrics over all other
optimization techniques, which the author has studied, are:

1. Internal determination of the search path, leading to
an optimum.

2. Adaptability to general statistical study of a partic-
ular problem's solution properties.

79
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3. Higher resistance to presence of local optima.
Four distinct disadvantages of variable metrics are:
1. Lack of external control over step size.
2. Sensitivity of reliable convergence to values of con; “““
vergence parameters.
3. Performance dependent on particular one-dimensional
search method used. (This is sometimes advantageous.)

4, Storage requirements of two N x N matrices for an

N-dimensional optimization problem.

Optimization Procedure

The operation of variable metrics is very simple indeed: One

~ tight computation loop is executed and reiterated until convergence. The
purpose of the technique is the minimization of a real-valued function
y(x). The point x*, at which y achieves its optimum value, is called an
"optimum". An initial point X in the search for x* is chosen, as an

educated guess, at x%* on the part of the user.

Initialization

1. The input starting point X in N-space is used to
obtain an initial gradient vector Vy° = Vy(xo). Put
Ho = IN for N dimensional identity matrix IN’ and put
j=1.

Computation Loop

2. A point xj is found on the line through xj~l in the

direction of Hj_lV'yj_l by one-dimensional optimization
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of the value of y(x) along this line. Upon the deter-
mipation of Vyj = Vy(xj), the matrix Hj is calculated.

3. Put j = j + 1, and reenter again at step 2.
For example, a point x

1

of HOVyo by one-dimensional optimizaiton, where H., represents a 'metric",

1
which aids reliable convergence, by prohibiting repeated searches along
the same direction ("oscillation"). Upon the determination of Vyl s
Vy(xl), matrix Hl is calculated and the steps are reiterated. Notice
that Ho = IN means that the initial (j = 1) one-dimensional optimization
is'merely a gradient search along the line through z, in the direction of
Vyo.

The metric matrix Hj is the sum of two other internal matrices.
When computing each of these last two matrices, there is a point at which
division occurs. Now, division by zero is not permitted, but convergence
of the computations is nevertheless represented by a divisor which is
extremely small (numerical zero). Consequently, convergence is checked
by the magnitude of the divisors prior to division. Thus, after N itera-
tions, convergence is tested at two places in each additional iteration
of the computation loop. The reason for waiting for the completion of N
iterations is the prevention of premature convergence to '"pseudo-optima",
until all different directions of search have been checked at least once.

Here is a summary of the minimization procedure used by variable
metrics:

1. Input N-vector X, calculate Vyo = Vy(xo), put Ho =1

N
for N x N identity matrix IN’ and set j = 1.

is found on the line through X, in the direction .
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2. Search for "minimum" x. on % oH for

I S BT
0 <a < l, calculate Vyj = Vy(xj), compute matrix Hi
(while twice checking for convergence), set j = j + 1,
and repeat 2.
The reader is referred to the book Foundations of Optimization by
Wilde and Beightler for an equivalent, but different, description of the
deflected gradient version of variable metrics popularized by Fletcher and
Powell. For a detailed exposition of the variable metric method of opti-

mization, reference can be made to Fletcher and Powell's paper of 1963, or

to "GOSPEL" by Dr. Huelsman at the University of Arizona (September 1968).

Discussion of Computer Programs

Subroutine FP represents the digital mechanization of the afore-
mentioned variable metric minimization scheme. As FP is merely a subrou-
tine, input and output data are transferred by means of calling sequence
(c.f., computer listing at the end of this section).

In order to function, FP needs only five bits of information and
a lot of storage:

N - the number of unknown parameters x

i

X0 - the initial estimate vector of unknown parameters x

i
CRIT

convergence criterion (numerical zero)

L ~ the maximum number of iterations of the variable
metric loop

M - the number of iterations per search of the one-
dimensional search routine.

The inputs are unaltered by the program, and three outputs are calculated:
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X - the final (and optimal) estimate vector of unknown
parameters X,

QINV - the estimate of the matrix of second partial deriv-
atives at the optimum. This is the storage area for
the metric matrix H.
Y - the optimized value of the scalar function y(x)
Two other variables ICALL and IC are of interest. ICALL is
. incremented by 1 for each time that FP requires a gradient evaluation.
IC is incremented by 1 for each time that the one-dimensional minimiza-
tion requires a function evaluation. The flow diagram appears in Fig. 1
and is discussed on pages 79 to 80.
The various N~dimensional buffers accomodate current and previous
gradients, step sizes, search vectors, and a scratch buffer for matrix
manipulations. Two N x N matrices are calculated and added to the previ-

ous N x N matrix H to obtain the current matrix H . This provides the

k-1 k

two opportunities for convergence tests. Storage requirements have been
kept to a minimum because all storage buffers must be furnished by the
user with FP requiring only enough memory locations to perform multipli-

cations, additions, etc.

Two essential inputs by the user are a function generator along

with a gradient generator. Comparative values of y(x) and Vy(x) are thus
made available to the program. In the current formulation, both of these
operations are performed by the subroutine GRADY. The method of Golden
Sections is used for one-dimensional minimization. This is mechanized in
subroutine GOLDEN. Descriptions of the method of Golden Sections can be

found in the aforementioned reference of Wilde and Beightler.
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< START >

FP

Initialize
Parameters

GRADY .

Compute

Squared
Error

Gradient

GOLDEN

Conduct
Deflected
Gradient

Search

Fp*®

Recompute
Metric
Matrix as
Sum of Two
Matrices

STOP

%#Check for exit condition of convergence after N iteratioms.

Fig. 1. Flow Diagram of Variable Metrics Program FP.
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Application to Inlet Bypass Door Servo

This particular example system is diagrammed on page 69. Refer-
ring to the diagram of this particular problem, the symbols all represent
transformed functions of the complex frequency p:

p_+ 1010

P(p) = =570

(p + x5 + Jx,)p + x5 - 3%,)

c(p) = x
-3 (p + 4000)2

a(p) = 371.5) (p+80.2943172.2)(p+80.29-3172.2)(p+173.16+4332.62)
p+u6 | (p+4s . 57+3281.u9) (p+uils . 57-§281.43)(p+84,2u+3u77.63)

(p+173.16-1332.62)(p+75.6943575.03)(p+75.69-3575.03)
(p+84.2u-3477.63)(p+130.2+3738.6)(p+130.2-3738.6

(p+82.8+3946.39)(p+82.8-3946.39)
(p+191.07+31083.28)(p+191.07~-31083.28)

The closed loop transfer function of the servomechanism is seen
from the figure to be

G(p)

T(P) * T3 Gl B (p) C(p)-D(p)

where the component transfer functions are given below:

(1.3073x102°)
p(p+2000)(p+967.5){p+1u61+34009){p+1461-34009)

D(p) =

1
(p+318.5431899)(p+318,5-71899)
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Aw is the frequency spectrum of input additive noise, and Ax' is
the frequency content of the undelayed shock position to be regulated. G
is the fixed inlet dynamics; P is the frequency relation between shock
position and exit pressure; C is the compensator of the form

(b + P)(p + By)
K

3

(p + a)2

and D gives the dynamics of the bypass door. All transfer functions are

fixed except C, and the whole problem is the search for three controlling

parameters, K = Xy5 Po = X t Ix,, and Po = Xy - jx2, in order that
-0 (327k + 30)(32mk + 37150)

be a minimum. Computer results give satisfying verification of predic-

tions.

Numerical Results

Firstly, the frequency response, which it is desired to match, is
uniformly 40 db down or more over the range of frequencies between 1 and
151 cycles per second.

Secondly, a chart of results can be given below:

! %9 *3 v z Stability
6 x 107> 248 142 13.9 0.4 Yes
1.0 248 142 13.9 0.5 Yes
1000 248 2 13.5 2.1 Yes
10024 86.1 778 8.2 4,1 Yes
100007 -192 2435  0.02  3u4.8 No
108 222 551 0.004 37.0 ?
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The entries beneath the label Z stand for the minimum attenuation in db
of the closed-loop frequency response over the range of frequencies from
1 to 121 cycles per second.

Low frequency sensitivity appears to decrease with increasing

values of xl in the formula

2
2

2
(p + x3) + X

c{p) = x
1 (p + uooo)2

However, previous studies have demonstrated that it is insufficient to
merely have C(p) = Xy and increase Xy in order to reduce low frequency
response because ingtability occurs as it appears to do in the runs of

the table.
Conclusions

This paper has demonstrated the application of a powerful optimi-
zation strategy for the case of cost functions, which can be written as
the ratio of two polynomials. The application is the discovery of several
combinations of acceptable parameter values for a controller, which
stabilizes and minimizes the low frequency sensitivity of an Inlet Bypass
Door Servo.

In reference to the schematic system diagram on page 69,,§uitable

combinations of X)s X5 and Xq in

(p + Xy + jx2)(p t Xy - jx2)

C(p) = x
1 (p + 4000)°
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are x, = 6 x 10-5, X, = 2u8, x

x3 z 778.

= 142, and x, = 16024, %, = 86.1,

3 1 2

The value of the approach taken in this paper is that its success
is independent of the particular numbers used to specify the component
transfer functions, and it converges rapidly and reliably for lower

degree problems while being simultaneously reliable at higher degrees.
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SUAROUTINE FR{KGy Ny My DELYND o WELYN AV 9 K5 fis "XKNT DELAY @LisVy
14Ps wUFse Yy TCALLY LCo» uiklly L) 89

FLETOHFR=POWFLL MINIMIZATLION OF FUNCTLON YSY(X) OF N VARIABLES X(1) «1Tn

INITIAL POLINT X0 Ub CUNVEROENT 2EQUENCE UF A%20e L IS THE MAALMUM NUsER OF
[IERATIUNS OF FPRy M IS int MAATMUM NUMABER OF TIERATIONS FOR GULOEN,

JUST— g e e

Ly Ay AND N mMUST ALL BE FPOSTTIVE INTEGERS Y  CRITTIS THE COUNVERGENCE
CRITERION FOR THE SEQUENLE ufF X#5,

FOR THF FORESOING INPUTe DUarROUTINE FP RETURNS AN ESTIMATE QINV OF THE INVERSE

OF THE HESSTAN MAITKRIX ANULU Tme MINIMUM VALUE Y UF Y (X)s EVALUATED AT IHE
MINIMIIM X :

ICALL FOUNTD THE NUMBER OF 1TIMES FP CALLS GRADY (FOR GRADIENTS) .

1C COUNTS THF NJUMBER OF TIMES GOLDEN CALLS GRADY (FOR FUNCTION ValLUES) .

TAE RETATNING TTNDESCRINED PARARETERS ARE FOR INTERNAL USE ONCYs

; MINTHMT 7€ YT YO+ CTHA R0 9FATHFWEA (AN (W)Y

DeELY=C*+GX

BOUELY =080 (BACKWARU UIFFERENTE D)
UxsNINVRUDELY

Uxz«QINVHOELYQ (AT DR ITIMUM)
G UNKNUWN

1o CHOOSE A0 ARSTITRARILY WiTe UELYO®EDELY (X0)

2+ PERFURM UNE~OTMENSTUNAL SEARCH WITH XT1)=XU=-MURDELYO
Y(X(1))SINF Y(AL{ly mMU)) OVER MU

3s RPUT QINVI(n)=] (N).
4o COMPUTE A(M)=X(M=]) =MURQINY (M=1)#DELY (M=])

Y (X (M) Y=INF Y (A Ty @)
Se COMPUTE QINv(M)SQINVIM=1)+UA ) #DX (M) T/ DX (M) TRODELY (M))

NI RN AN A

[ RN

¢0(NV(M-[)"UUELY(M)“uucLY(MIT%QINVTM~I)/(DUFLYIM)T%QINV(M-I75quLYTﬁTT“
THENy QINV(N) 2PPRUXIMATES WINVy AND X (iN) ESTIMATES THE MINIMUM X. -

P ]

X{N)=Xao=QInNV (NYHDELYOD

oK
XAN) =AN=SUM (MU (M) #QINV (M= L) #PELY (Mm])) (M=Z)9eonsiV)

A2NBILE L

DLAENOLIUN XO(NJ e DELYULN) s DELYN({N)s AL(NJ)y A(N)s A(Ny NIy ANCND g
IDELA(N) o QTNYV(Ns N)Ys BUF(N)y XP(N)

[ONE=1
CALL MOVE (xPy A0 Ns 10ONE)

CAILLL OGRANY(XPy Yo DELYOs ICALL)
CALL MIDEMT(QINV. N)

13

DO 3 K=1,. L

CALL MINTON(QINVS No No DELYUs IONEs DELYN)

CALL CHANGE (DELYNy Ny LTUNE]
CALL MPLUSN (AP DELYNs Ny IONE, X1)

CALL GULDENTMe Ne XF9 Aly A9 Ay OELAY UELYNe BUFs ANy [C7

CALL GRAENY TKNY Y5~ DECYNY—TCALLY ——-
CAILL CHANGFE (DELYOs Ny I1UNE)

CALL MPLUSN(DELYNy DELYUS Ny JOREy LELY(O)




Capl MINTOW(OINV . Ny Ne el Yus LONEs

HUF )

CALL MInros{rHUure Na LUNLs BUF, Ny
CALL TiunFQDELYUs BUF 9, Ny IONEs TONE s

[F Db ann,n) GUTO 4
IFDOTeCRTITY WUTO 1

‘ IF (KOl e, ORKeEWe 1) GOTU &
l VY 322 I=1s N

N0 322 Jd=le N
322 AlTe JVE=A(le JY/0

CALL CHANGE {(XPs N TONE)

caLt MRPLUSN (XN AFy N LONEs DELX)
CALL MINTOM(DELXs Ny TONEs DELX)

CaLL INNER(DELAy DELYUs WNs IUNES

IF(DLEan, M) GUTO 4

W)

[FL.GTecRTIT)Y LOTO &
IF(KoGToeN R KeEQL 1) BUIO 4

? DO 37 1=1, N
00_32 J=1a N
LY A(Te JI=a(Ts JI/70 o e —_—
CALL MPLUSM(QINVs As No Ne QINV)
CALL MOVF (XPy ANy Ny LONE)
CALL MOVE(DELYVe DELYN No [
5 CONTTINUE
4 CALL MUVE (YW e ANa Ny TONETY
- RETURN
5 PREPARED UNUFR NASA CONTRACT NGR=03=002=115

LN




SUAROUT Tk GOLUENTMY TN TTAT s Ay X339 Kay AD s "Ahs ATs XRy IC)T

91

TONE = THENSTONA L MINTMTZATION "UF T YEY OV RY " GOLOEN SECTION W ITRTN VARTABLES 777

X(I)e ENDPOTINTS Xls X2 OF SEARCH INTERVALY abND OPITIMAL POINT Xy UUTPUI

M 1S Tie NIMHER OF TTERATIUNG PER SEAKCH,

''''''' DTAENSTON YT INY K2 TNT s R3TNTy A4 (NT s A5 (N A& INT 3 X7 INYy XA TNy """

I0nE=1

(2] o601 H)3IIVHEY
OlzGwlia0

G2=2,U=i3
CALL MO\/E(J\'SJQ Als Ny LONE )

CALL MOVFE (X7s A2y Ns» 10ONE)
CALL MOVE (xBs A6y Ny -1UnE)

CALL CHANGE (X889 Ny 1ONE)
CALL MPLUSN(XTY AHe Ne ILONEs X4)

PO 1 Jdsly N
ARG () =62%xa ()

CALL wmPLUSMN(K6y x4y Ny LONEY X3)
CAILL GRANY(AR3s Yls A& IC)

CALL CHANGF (X469 Ns TUNE)
CALL MPLUSH(XT7y X4y N3 LONEs X5)

CALL GRADY (A9 Y29 ABY 1C)
CALL CHANGE (X4 No IONE)

YisY (K1 +G2%UX)
Y2=Y (X2=G2%0LiX)

DOTT3TTETTH
DO 31 J=1, N

XG (JVEGIH L4 ()
TE(Y1aLT,.¥Y») GUTQ 33

CALL MUVE (XOs A3s N JUNE]
CALL MOVE(X3s ASs No 10NE)

CAT T CRRNGE TRGy Ny TURET™
CALL MPLUSN(XT7s X49 No ITUNEy Xx3%)

ColLl. CHANGE (X499 No LOUNE)
Yi=Y?

CALL GRADY (XK5y Y29 ABY.10)
GOTO 3

CALL MOVE(XTy ABy Ns 1ONE]D
CALL MOVE (x5 A3y Ny 10NE)

Call. MPLUSH{X6Y A49 Ne LUNLy X3)
Ye=Y1

CALL GHRADY (X3y Y1 ABy 1CI
CONTINUE

X=T1. 0702, 0%0G7)
DO B 1=14 N

XG (Y EA¥X4G (1)
CALL MPLUSN(X69 X439 Ne LONEs X8)

RETUKN

. PREPARFD UNDER NASA CONTRACT WGR=(3=002~115

END




SURRDUTINF ORADY TR Y9 UYs T

DIMENSTON % (1)9 DY (L) ”_”_-§§ _______
‘‘‘‘‘‘‘‘ COMPLERN 7, Gy Us Py As By Ts Cy S LC(3)V TTTTTTTeTmmTTT T h
Y=n

CALL MAERO(DYs 3¢ LI

IF=1
=y e
S=AMPLALN, 0 6e2B318531%F)
Catl GF(TIFs G)
CALL DF(TFs )
CALL PriTF, ©)
CALL CF(T1F,s xy C)
CAlLL TF{IFs T}
A=pP G
B=1.0+C¥A
7=0/B=T
DEIN =g x (B TRE2FX(ETFRZT7 (834000« 0)Y F¥2
DCI2)E2a08X (1) PR(2) /7 (244000.0) #¥2
DC I =2 awx (1 F{S+R{3TTI/7(5%4000. 00 %%2
CEAYGHCUNIG(Z) /BHu2
DO 11 J=1, 3
1 DY () =DY (J1 =2 0#REAL (CHUC (J))
2=7%CONJG(Z)
Y=y+7
CONTTNUE
RETURN
END
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BTITT 0¥ ((2+HQegd Q) WF ¥ (2o 2R )R (Vo1 T3 107U+ 62%%7)

1 H((PeT7569) #0245 (b YIFH2) % ((P+RLB)} W% 24946, 398%2) /
N R A E AN R Y S Y A AT P AT L ) R M SR YA KPR A iy B L R
3 H(R+1IV2)HH2+ T3 u¥¥2) % ((P*19]1,07)%#2+41083,28%%2))
HETURN T TTTmTTmTTTa o s
E N




S . e
COGHLEA Ny P : ok

F=1
PzAMPLA(N, 0y 628318531%F)

D21 o 3073510, 0% F 20/ (PR IP¥2U000) ¥ (P+FOTa0) H((P+1606La0) ¥ 2+40030%%2)
1 ) #((P+3114,0)%*#241899,0#%2))

RE TURN R
END




o SURROUTITNE PF {1y PP — —
COMPLER PP,y P 95 -
F=1
PaeMPLA (N, 6e28318031%F)
PP=(P+1010.0)/1010.0
RE TURN
END TTmmmmmTTTTTTTTTTTTTTTTTTTTT




TS ULROUTINE TCF (T TRY T

DIAENSION x(1y e 36
TTTTTTROOWLERTESR
F=1 -

P=CMPLATN (s 6e2B318DI1%F) '
CEX#((PexX () #H24X(2)¥H2)/ (P+4000, 1) #*4L
RETURN

END




TS URIROUTIRETTF (T T N

COAPLEX T, P T :
- F=y

PEOMPLX (0,09 6e28316531%F)

TE371+5%P/ ((P+30.UT#(PF37150+07)

RE TURN

END




